• 【poj2155】Matrix(二维树状数组区间更新+单点查询)


    Description

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 

    We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 

    1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
    2. Q x y (1 <= x, y <= n) querys A[x, y]. 

    Input

    The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 
    The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above. 

    Output

    For each querying output one line, which has an integer representing A[x, y]. 
    There is a blank line between every two continuous test cases. 

    Sample Input

    1
    2 10
    C 2 1 2 2
    Q 2 2
    C 2 1 2 1
    Q 1 1
    C 1 1 2 1
    C 1 2 1 2
    C 1 1 2 2
    Q 1 1
    C 1 1 2 1
    Q 2 1
    

    Sample Output

    1
    0
    0
    1

    【题意】

    n*n坐标图起初都为0,C:翻转左下和右上两个坐标围成的矩阵中所有点,Q:查询此点的0 1状态

    【思路】

    二维树状数组区间修改+单点查询模板题,先考虑一维。

    一维单点查询就是前缀和,即query(x)。

    区间修改先让s-n都加num,再让t+1-n减去num,即update(s, num),update(t+1, -num)。

    二维的单点查询变成二维就好了query(x, y)。

    区间修改update(x1, y1, num), update(x2+1, y1, -num), update(x1, y2+1, -num), update(x2+1, y2+1, num)。开始也是黑人问号,在纸上画几笔就看出来了。

    这道题问得是0 1状态,那么只要统计翻转次数是偶次还是奇次就行了

    【代码】

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #include <cstring>
     5 using namespace std;
     6 const int N = 1005;
     7 int c[N][N], n;
     8 int lowbit(int x)
     9 {
    10     return x&(-x);
    11 }
    12 void update(int x, int y, int m)
    13 {
    14     for(int i = x; i <= n; i += lowbit(i))
    15         for(int j = y; j <= n; j += lowbit(j))
    16             c[i][j] += m;
    17 }
    18 int query(int x, int y)
    19 {
    20     int sum = 0;
    21     for(int i = x; i > 0; i -= lowbit(i))
    22         for(int j = y; j > 0; j-= lowbit(j))
    23             sum += c[i][j];
    24     return sum;
    25 }
    26 int main()
    27 {
    28     int t, m;
    29     cin>>t;
    30     while(t--)
    31     {
    32         memset(c, 0, sizeof c);
    33         scanf("%d%d", &n, &m);
    34         while(m--)
    35         {
    36             char c;
    37             scanf(" %c", &c);
    38             if(c == 'C')
    39             {
    40                 int x1, x2, y1, y2;
    41                 scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
    42                 update(x1, y1, 1);
    43                 update(x1, y2+1, -1);
    44                 update(x2+1, y1, -1);
    45                 update(x2+1, y2+1, 1);
    46             }
    47             else
    48             {
    49                 int x, y;
    50                 scanf("%d%d", &x, &y);
    51                 printf("%d
    ", query(x, y)&1);
    52             }
    53         }
    54         if(t) puts("");
    55     }
    56     return 0;
    57 }
  • 相关阅读:
    前端几个常用简单的开发手册拿走不谢
    初中级前端开发工程师如何提升个人能力?
    初中级前端开发工程师如何提升个人能力?
    【程序人生】那些工作之外的技术挣钱方式
    Java EE (13) -- 常用的基础结构模式
    3、数据类型
    洛谷——P2299 Mzc和体委的争夺战
    codevs——T1214 线段覆盖
    洛谷——P1106 删数问题
    洛谷——P1031 均分纸牌
  • 原文地址:https://www.cnblogs.com/lesroad/p/8479839.html
Copyright © 2020-2023  润新知