• 向量


    向量是同时具有 大小 、方向 的物理量。

    向量一般可以用来表示:

    • 力    :朝一个方向上作用一定大小的力量
    • 位移:朝一个方向移动一定距离
    • 速度:朝一个方向单位时间移动一定距离
    • 方向:朝某一个方向。

    向量特性:

    • 只能平移
    • 无法旋转
    • 无法缩放

    向量的数学运算:

    • 向量 X 标量:表示将该向量的长度放大 N倍。向量A = (x,y,z);标量N,则 N*A = (nx,ny,nz);
    • 向量相加:

      几何意如下图,

      

      数学算数:AB =(x,y,z) BC=(a,b,c), AB+BC =(x+a,y+b,z+c)

    • 向量相减:

       几何意义如下图,(共起点,连终点,方向指向 被减向量)

      

      数学算法:AB =(x,y,z) CD=(a,b,c), CD-AB=(a-x,b-y,c-z)

      向量叉乘:2D向量没有叉乘运算,只有3D向量有,3D向量的叉乘运算得到的结果仍是一个3D向量:

      几何意义如下图

      

      |c| =|a|*|b|*sin<a,b>,表示两个向量叉乘,得到的结果向量c 的模长 = 向量a 与向量b组成的平行四边形的面积

      c的方向,则根据向量所处的坐标系是左手坐标系还是右手坐标系来确定方向。

      向量叉乘的数学公式为: a=(x,y,z) ,b = (α,β,δ),则c  = a x b = (y*δ-z*β,z*α-x*δ,x*β-y*α)

      看公式就已经知道,向量的叉乘是不满足交换律的,及 a X b != b X a;

      向量点乘:向量点乘得到的是一个标量,计算公式为:

      标量c = |a|*|b|*cos<a,b>(两个向量的模乘以两个向量夹角的余弦值)。

       a=(x,y,z) ,b = (α,β,δ),则c  = a•b =x*α+y*β+z*δ

      

  • 相关阅读:
    乐观锁+悲观锁
    python读取大文件处理方式
    ionic集成jPush极光推送
    AngularJs中$http发送post或者get请求,SpringMVC后台接收不到参数值的解决办法
    ionic开发插件之ngCordova配置安装(搬运)
    使用Ionic进行移动端APP开发
    HashMap,LinkedHashMap,TreeMap的区别
    ubuntu下node、npm、bower简易安装
    Mongodb数据更新命令(update、save)
    mongoDb地理空间索引和查询
  • 原文地址:https://www.cnblogs.com/leiGameDesigner/p/8371111.html
Copyright © 2020-2023  润新知