使用trackball 来旋转场景
工程文件下载
效果如下:
当鼠标点击和在窗口移动时,x,y的值以左上角为原点,
首先变换成左下角为原点。然后整个窗口map到【-1,1】,【-1,1】
的平面上。
x = (x*2.0 - width)/width
dx = (2.*dx)/width
y = (y*2.0 - height)/height
dy = (2.*dy)/height
trackball 原理,在viewport上“增加”一个半球体,x,y值都和平面上的一样。
从p1移动到p2
计算出移动轴
和角度。
trackball代码
__docformat__ = 'restructuredtext' __version__ = '1.0' import math import OpenGL.GL as gl from OpenGL.GL import GLfloat # Some useful functions on vectors # ----------------------------------------------------------------------------- def _v_add(v1, v2): return [v1[0]+v2[0], v1[1]+v2[1], v1[2]+v2[2]] def _v_sub(v1, v2): return [v1[0]-v2[0], v1[1]-v2[1], v1[2]-v2[2]] def _v_mul(v, s): return [v[0]*s, v[1]*s, v[2]*s] def _v_dot(v1, v2): return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2] def _v_cross(v1, v2): return [(v1[1]*v2[2]) - (v1[2]*v2[1]), (v1[2]*v2[0]) - (v1[0]*v2[2]), (v1[0]*v2[1]) - (v1[1]*v2[0])] def _v_length(v): return math.sqrt(_v_dot(v,v)) def _v_normalize(v): try: return _v_mul(v,1.0/_v_length(v)) except ZeroDivisionError: return v # Some useful functions on quaternions # ----------------------------------------------------------------------------- def _q_add(q1,q2): t1 = _v_mul(q1, q2[3]) t2 = _v_mul(q2, q1[3]) t3 = _v_cross(q2, q1) tf = _v_add(t1, t2) tf = _v_add(t3, tf) tf.append(q1[3]*q2[3]-_v_dot(q1,q2)) return tf def _q_mul(q, s): return [q[0]*s, q[1]*s, q[2]*s, q[3]*s] def _q_dot(q1, q2): return q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2] + q1[3]*q2[3] def _q_length(q): return math.sqrt(_q_dot(q,q)) def _q_normalize(q): try: return _q_mul(q,1.0/_q_length(q)) except ZeroDivisionError: return q def _q_from_axis_angle(v, phi): q = _v_mul(_v_normalize(v), math.sin(phi/2.0)) q.append(math.cos(phi/2.0)) return q def _q_rotmatrix(q): m = [0.0]*16 m[0*4+0] = 1.0 - 2.0*(q[1]*q[1] + q[2]*q[2]) m[0*4+1] = 2.0 * (q[0]*q[1] - q[2]*q[3]) m[0*4+2] = 2.0 * (q[2]*q[0] + q[1]*q[3]) m[0*4+3] = 0.0 m[1*4+0] = 2.0 * (q[0]*q[1] + q[2]*q[3]) m[1*4+1] = 1.0 - 2.0*(q[2]*q[2] + q[0]*q[0]) m[1*4+2] = 2.0 * (q[1]*q[2] - q[0]*q[3]) m[1*4+3] = 0.0 m[2*4+0] = 2.0 * (q[2]*q[0] - q[1]*q[3]) m[2*4+1] = 2.0 * (q[1]*q[2] + q[0]*q[3]) m[2*4+2] = 1.0 - 2.0*(q[1]*q[1] + q[0]*q[0]) m[3*4+3] = 1.0 return m class Trackball(object): ''' Virtual trackball for 3D scene viewing. ''' def __init__(self, theta=0, phi=0, zoom=1, distance=3): ''' Build a new trackball with specified view ''' self._rotation = [0,0,0,1] self.zoom = zoom self.distance = distance self._count = 0 self._matrix=None self._RENORMCOUNT = 97 self._TRACKBALLSIZE = 0.8 self._set_orientation(theta,phi) self._x = 0.0 self._y = 0.0 def drag_to (self, x, y, dx, dy): ''' Move trackball view from x,y to x+dx,y+dy. ''' viewport = gl.glGetIntegerv(gl.GL_VIEWPORT) width,height = float(viewport[2]), float(viewport[3]) x = (x*2.0 - width)/width dx = (2.*dx)/width y = (y*2.0 - height)/height dy = (2.*dy)/height q = self._rotate(x,y,dx,dy) self._rotation = _q_add(q,self._rotation) self._count += 1 if self._count > self._RENORMCOUNT: self._rotation = _q_normalize(self._rotation) self._count = 0 m = _q_rotmatrix(self._rotation) self._matrix = (GLfloat*len(m))(*m) def zoom_to (self, x, y, dx, dy): ''' Zoom trackball by a factor dy ''' viewport = gl.glGetIntegerv(gl.GL_VIEWPORT) height = float(viewport[3]) self.zoom = self.zoom-5*dy/height def pan_to (self, x, y, dx, dy): ''' Pan trackball by a factor dx,dy ''' self.x += dx*0.1 self.y += dy*0.1 def push(self): viewport = gl.glGetIntegerv(gl.GL_VIEWPORT) gl.glMatrixMode(gl.GL_PROJECTION) gl.glPushMatrix() gl.glLoadIdentity () aspect = viewport[2]/float(viewport[3]) aperture = 35.0 near = 0.1 far = 100.0 top = math.tan(aperture*3.14159/360.0) * near * self._zoom bottom = -top left = aspect * bottom right = aspect * top gl.glFrustum (left, right, bottom, top, near, far) gl.glMatrixMode (gl.GL_MODELVIEW) gl.glPushMatrix() gl.glLoadIdentity () # gl.glTranslate (0.0, 0, -self._distance) gl.glTranslate (self._x, self._y, -self._distance) gl.glMultMatrixf (self._matrix) def pop(void): gl.glMatrixMode(gl.GL_MODELVIEW) gl.glPopMatrix() gl.glMatrixMode(gl.GL_PROJECTION) gl.glPopMatrix() def _get_matrix(self): return self._matrix matrix = property(_get_matrix, doc='''Model view matrix transformation (read-only)''') def _get_zoom(self): return self._zoom def _set_zoom(self, zoom): self._zoom = zoom if self._zoom < .25: self._zoom = .25 if self._zoom > 10: self._zoom = 10 zoom = property(_get_zoom, _set_zoom, doc='''Zoom factor''') def _get_distance(self): return self._distance def _set_distance(self, distance): self._distance = distance if self._distance < 1: self._distance= 1 distance = property(_get_distance, _set_distance, doc='''Scene distance from point of view''') def _get_theta(self): self._theta, self._phi = self._get_orientation() return self._theta def _set_theta(self, theta): self._set_orientation(math.fmod(theta,360.0), math.fmod(self._phi,360.0)) theta = property(_get_theta, _set_theta, doc='''Angle (in degrees) around the z axis''') def _get_phi(self): self._theta, self._phi = self._get_orientation() return self._phi def _set_phi(self, phi): self._set_orientation(math.fmod(self._theta,360.), math.fmod(phi,360.0)) phi = property(_get_phi, _set_phi, doc='''Angle around x axis''') def _get_orientation(self): ''' Return current computed orientation (theta,phi). ''' q0,q1,q2,q3 = self._rotation ax = math.atan(2*(q0*q1+q2*q3)/(1-2*(q1*q1+q2*q2)))*180.0/math.pi az = math.atan(2*(q0*q3+q1*q2)/(1-2*(q2*q2+q3*q3)))*180.0/math.pi return -az,ax def _set_orientation(self, theta, phi): ''' Computes rotation corresponding to theta and phi. ''' self._theta = theta self._phi = phi angle = self._theta*(math.pi/180.0) sine = math.sin(0.5*angle) xrot = [1*sine, 0, 0, math.cos(0.5*angle)] angle = self._phi*(math.pi/180.0) sine = math.sin(0.5*angle); zrot = [0, 0, sine, math.cos(0.5*angle)] self._rotation = _q_add(xrot, zrot) m = _q_rotmatrix(self._rotation) self._matrix = (GLfloat*len(m))(*m) def _project(self, r, x, y): ''' Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet if we are away from the center of the sphere. ''' d = math.sqrt(x*x + y*y) if (d < r * 0.70710678118654752440): # Inside sphere z = math.sqrt(r*r - d*d) else: # On hyperbola t = r / 1.41421356237309504880 z = t*t / d return z def _rotate(self, x, y, dx, dy): ''' Simulate a track-ball. Project the points onto the virtual trackball, then figure out the axis of rotation, which is the cross product of x,y and x+dx,y+dy. Note: This is a deformed trackball-- this is a trackball in the center, but is deformed into a hyperbolic sheet of rotation away from the center. This particular function was chosen after trying out several variations. ''' if not dx and not dy: return [ 0.0, 0.0, 0.0, 1.0] last = [x, y, self._project(self._TRACKBALLSIZE, x, y)] new = [x+dx, y+dy, self._project(self._TRACKBALLSIZE, x+dx, y+dy)] a = _v_cross(new, last) d = _v_sub(last, new) t = _v_length(d) / (2.0*self._TRACKBALLSIZE) if (t > 1.0): t = 1.0 if (t < -1.0): t = -1.0 phi = 2.0 * math.asin(t) return _q_from_axis_angle(a,phi) def __str__(self): phi = str(self.phi) theta = str(self.theta) zoom = str(self.zoom) return 'Trackball(phi=%s,theta=%s,zoom=%s)' % (phi,theta,zoom) def __repr__(self): phi = str(self.phi) theta = str(self.theta) zoom = str(self.zoom) return 'Trackball(phi=%s,theta=%s,zoom=%s)' % (phi,theta,zoom)