• C. DZY Loves Sequences



    C. DZY Loves Sequences
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    DZY has a sequence a, consisting of n integers.

    We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.

    Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.

    You only need to output the length of the subsegment you find.

    Input

    The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

    Output

    In a single line print the answer to the problem — the maximum length of the required subsegment.

    Sample test(s)
    input
    6
    7 2 3 1 5 6
    
    output
    5
    
    Note

    You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.


    本题坑还算比較多的,我用的递推,dp1[i]表示以i结尾的递增序列的长度,dp2[i]表示已i開始的递增序列的长度,要找出最长的仅仅改变一个数就能构成递增序列的序列长度仅仅须要枚举i即可了,代码例如以下

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    typedef long long LL;
    using namespace std;
    int A[100005];
    int dp1[100005],dp2[100005];
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            memset(dp1,0,sizeof(dp1));
            memset(dp2,0,sizeof(dp2));
            scanf("%d",A+1);
            dp1[1]=1;
            for(int i=2;i<=n;i++)
            {
                scanf("%d",A+i);
                if(A[i]>A[i-1])dp1[i]=dp1[i-1]+1;
                else dp1[i]=1;
            }
            dp2[n]=1;
            for(int i=n-1;i>=1;i--)
            {
                if(A[i]<A[i+1])dp2[i]=dp2[i+1]+1;
                else dp2[i]=1;
            }
            int m=1;
            A[0]=0;
            A[n+1]=1000000005;
            for(int i=1;i<=n;i++){
                    int t=dp1[i-1]+dp2[i+1]+1;
                    if(A[i+1]-A[i-1]<2)t=max(dp1[i],dp2[i])+1;
                    m=max(m,t);
            }
            cout<<m<<endl;
        }
        return 0;
    }




  • 相关阅读:
    C# 实现从程序集中抽取内嵌资源文件
    git clone 显著提速,解决Github代码拉取速度缓慢问题
    C# 将List数据 导出到csv 文件
    Nginx的location匹配规则-根据url 路径重定向到不同的IP
    WinForm最小化到托盘以及托盘右键菜单
    安卓手机浏览器调试-Debug模式
    C#-Forms.Timer、Timers.Timer、Threading.Timer的比较和使用
    批处理实现批量创建快捷方式
    设计模式(六)装饰模式(转)
    设计模式(五)桥接模式(转)
  • 原文地址:https://www.cnblogs.com/ldxsuanfa/p/10916588.html
  • Copyright © 2020-2023  润新知