• 大区间素数筛选 POJ2689


    题意:

    给一个区间[L,U],(1<=L< U<=2,147,483,647),U-L<=1000000,求出[L,U]内距离近期和距离最远的素数对。


    因为L,U都小于2^32,所以区间内的合数的最小质因子必定小于2^16,所以先筛出2^16以内的素数,用筛出来的素数去筛[L,U]内的合数。然后把[L,U]内的素数保存下来,再搜索近期和最远的素数对就可以。注意两整数相乘可能溢出32位,注意对1的推断。


    代码:

    #include <cstdlib>
    #include <cctype>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #include<climits>
    #include <algorithm>
    #include <vector>
    #include <string>
    #include <iostream>
    #include <sstream>
    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <fstream>
    #include <numeric>
    #include <iomanip>
    #include <bitset>
    #include <list>
    #include <stdexcept>
    #include <functional>
    #include <utility>
    #include <ctime>
    using namespace std;
    
    #define PB push_back
    #define MP make_pair
    
    #define REP(i,x,n) for(int i=x;i<(n);++i)
    #define FOR(i,l,h) for(int i=(l);i<=(h);++i)
    #define FORD(i,h,l) for(int i=(h);i>=(l);--i)
    #define SZ(X) ((int)(X).size())
    #define ALL(X) (X).begin(), (X).end()
    #define RI(X) scanf("%d", &(X))
    #define RII(X, Y) scanf("%d%d", &(X), &(Y))
    #define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
    #define DRI(X) int (X); scanf("%d", &X)
    #define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
    #define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
    #define OI(X) printf("%d",X);
    #define RS(X) scanf("%s", (X))
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MS1(X) memset((X), -1, sizeof((X)))
    #define LEN(X) strlen(X)
    #define F first
    #define S second
    #define Swap(a, b) (a ^= b, b ^= a, a ^= b)
    #define Dpoint  strcut node{int x,y}
    #define cmpd int cmp(const int &a,const int &b){return a>b;}
    
     /*#ifdef HOME
        freopen("in.txt","r",stdin);
        #endif*/
    const int MOD = 1e9+7;
    typedef vector<int> VI;
    typedef vector<string> VS;
    typedef vector<double> VD;
    typedef long long LL;
    typedef pair<int,int> PII;
    //#define HOME
    
    int Scan()
    {
    	int res = 0, ch, flag = 0;
    
    	if((ch = getchar()) == '-')				//推断正负
    		flag = 1;
    
    	else if(ch >= '0' && ch <= '9')			//得到完整的数
    		res = ch - '0';
    	while((ch = getchar()) >= '0' && ch <= '9' )
    		res = res * 10 + ch - '0';
    
    	return flag ? -res : res;
    }
    /*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/
    #define MAXN 100000
    int prime[MAXN];
    int vis[MAXN+5];
    int cnt;
    void getprime()
    {cnt=0;
    for(int i=2;i<=MAXN;i++)
        if(!vis[i])
    {
        prime[cnt++]=i;
        for(int j=0;j<cnt&&prime[j]<=MAXN/i;j++)
        {
            vis[prime[j]*i]=1;
            if(i%prime[j]==0)
                break;
        }
    }
    
    }
    
    int notprime[1000000+5];
    int prime2[1000000+5];
    int cnt2;
    void getprime2(int L,int U)
    {
    
        for(int i=0;i<cnt;i++)
        {   if(prime[i]>=U)
                break;
            int s=L/prime[i];
            if(s<=1)
                s=2;
            for(int j=s;(long long)prime[i]*j<=U;j++)
                if((long long )prime[i]*j>=L)
            {
                notprime[(long long )prime[i]*j-L]=1;
            }
        }
        cnt2=0;
        REP(i,0,U-L+1)
        {
            if(!notprime[i]&&(i+L)!=1&&(i+L)!=0)
                prime2[cnt2++]=i+L;
    
        }
    
    }
    
    
    
    int main()
    {getprime();
    int L,U;
    while(RII(L,U)!=EOF)
    {
        MS0(notprime);
        getprime2(L,U);
        int ans1=INT_MAX;
        int ans2=0;
        int n1,n2,f1,f2;
        if(cnt2<2)
        {
            printf("There are no adjacent primes.
    ");
            continue;
        }
        REP(i,0,cnt2-1)
        {
           if(prime2[i+1]-prime2[i]<ans1)
           {
               ans1=prime2[i+1]-prime2[i];
               n1=prime2[i];
               n2=prime2[i+1];
           }
           if(prime2[i+1]-prime2[i]>ans2)
           {
               ans2=prime2[i+1]-prime2[i];
               f1=prime2[i];
               f2=prime2[i+1];
           }
        }
        printf("%d,%d are closest, %d,%d are most distant.
    ",n1,n2,f1,f2);
    }
    
    
    
            return 0;
    }
    
    


  • 相关阅读:
    ORA-01033: ORACLE initialization or shutdown in progress
    String.Format 格式化货币的小问题
    SQL Server——存储过程
    如何书写优雅、漂亮的SQL脚本?
    清除Chrome浏览器的历史记录、缓存
    SQL模板资源管理器,你用了吗?
    WPF笔记(2.4 Grid)
    python实现插入排序
    冒泡算法实现
    python获取本地ip地址的方法
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/5335979.html
Copyright © 2020-2023  润新知