题意:
给一个区间[L,U],(1<=L< U<=2,147,483,647),U-L<=1000000,求出[L,U]内距离近期和距离最远的素数对。
因为L,U都小于2^32,所以区间内的合数的最小质因子必定小于2^16,所以先筛出2^16以内的素数,用筛出来的素数去筛[L,U]内的合数。然后把[L,U]内的素数保存下来,再搜索近期和最远的素数对就可以。注意两整数相乘可能溢出32位,注意对1的推断。
代码:
#include <cstdlib> #include <cctype> #include <cstring> #include <cstdio> #include <cmath> #include<climits> #include <algorithm> #include <vector> #include <string> #include <iostream> #include <sstream> #include <map> #include <set> #include <queue> #include <stack> #include <fstream> #include <numeric> #include <iomanip> #include <bitset> #include <list> #include <stdexcept> #include <functional> #include <utility> #include <ctime> using namespace std; #define PB push_back #define MP make_pair #define REP(i,x,n) for(int i=x;i<(n);++i) #define FOR(i,l,h) for(int i=(l);i<=(h);++i) #define FORD(i,h,l) for(int i=(h);i>=(l);--i) #define SZ(X) ((int)(X).size()) #define ALL(X) (X).begin(), (X).end() #define RI(X) scanf("%d", &(X)) #define RII(X, Y) scanf("%d%d", &(X), &(Y)) #define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z)) #define DRI(X) int (X); scanf("%d", &X) #define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y) #define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z) #define OI(X) printf("%d",X); #define RS(X) scanf("%s", (X)) #define MS0(X) memset((X), 0, sizeof((X))) #define MS1(X) memset((X), -1, sizeof((X))) #define LEN(X) strlen(X) #define F first #define S second #define Swap(a, b) (a ^= b, b ^= a, a ^= b) #define Dpoint strcut node{int x,y} #define cmpd int cmp(const int &a,const int &b){return a>b;} /*#ifdef HOME freopen("in.txt","r",stdin); #endif*/ const int MOD = 1e9+7; typedef vector<int> VI; typedef vector<string> VS; typedef vector<double> VD; typedef long long LL; typedef pair<int,int> PII; //#define HOME int Scan() { int res = 0, ch, flag = 0; if((ch = getchar()) == '-') //推断正负 flag = 1; else if(ch >= '0' && ch <= '9') //得到完整的数 res = ch - '0'; while((ch = getchar()) >= '0' && ch <= '9' ) res = res * 10 + ch - '0'; return flag ? -res : res; } /*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/ #define MAXN 100000 int prime[MAXN]; int vis[MAXN+5]; int cnt; void getprime() {cnt=0; for(int i=2;i<=MAXN;i++) if(!vis[i]) { prime[cnt++]=i; for(int j=0;j<cnt&&prime[j]<=MAXN/i;j++) { vis[prime[j]*i]=1; if(i%prime[j]==0) break; } } } int notprime[1000000+5]; int prime2[1000000+5]; int cnt2; void getprime2(int L,int U) { for(int i=0;i<cnt;i++) { if(prime[i]>=U) break; int s=L/prime[i]; if(s<=1) s=2; for(int j=s;(long long)prime[i]*j<=U;j++) if((long long )prime[i]*j>=L) { notprime[(long long )prime[i]*j-L]=1; } } cnt2=0; REP(i,0,U-L+1) { if(!notprime[i]&&(i+L)!=1&&(i+L)!=0) prime2[cnt2++]=i+L; } } int main() {getprime(); int L,U; while(RII(L,U)!=EOF) { MS0(notprime); getprime2(L,U); int ans1=INT_MAX; int ans2=0; int n1,n2,f1,f2; if(cnt2<2) { printf("There are no adjacent primes. "); continue; } REP(i,0,cnt2-1) { if(prime2[i+1]-prime2[i]<ans1) { ans1=prime2[i+1]-prime2[i]; n1=prime2[i]; n2=prime2[i+1]; } if(prime2[i+1]-prime2[i]>ans2) { ans2=prime2[i+1]-prime2[i]; f1=prime2[i]; f2=prime2[i+1]; } } printf("%d,%d are closest, %d,%d are most distant. ",n1,n2,f1,f2); } return 0; }