• (hdu step 6.3.7)Cat vs. Dog(当施工方规则:建边当观众和其他观众最喜爱的东西冲突,求最大独立集)


    称号:

    Cat vs. Dog

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 219 Accepted Submission(s): 86
     
    Problem Description
    The latest reality show has hit the TV: ``Cat vs. Dog''. In this show, a bunch of cats and dogs compete for the very prestigious Best Pet Ever title. In each episode, the cats and dogs get to show themselves off, after which the viewers vote on which pets should stay and which should be forced to leave the show.

    Each viewer gets to cast a vote on two things: one pet which should be kept on the show, and one pet which should be thrown out. Also, based on the universal fact that everyone is either a cat lover (i.e. a dog hater) or a dog lover (i.e. a cat hater), it has been decided that each vote must name exactly one cat and exactly one dog.

    Ingenious as they are, the producers have decided to use an advancement procedure which guarantees that as many viewers as possible will continue watching the show: the pets that get to stay will be chosen so as to maximize the number of viewers who get both their opinions satisfied. Write a program to calculate this maximum number of viewers.
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line with three integers c, d, v (1 ≤ c, d ≤ 100 and 0 ≤ v ≤ 500): the number of cats, dogs, and voters.
    * v lines with two pet identifiers each. The first is the pet that this voter wants to keep, the second is the pet that this voter wants to throw out. A pet identifier starts with one of the characters `C' or `D', indicating whether the pet is a cat or dog, respectively. The remaining part of the identifier is an integer giving the number of the pet (between 1 and c for cats, and between 1 and d for dogs). So for instance, ``D42'' indicates dog number 42.
     
    Output
    Per testcase:

    * One line with the maximum possible number of satisfied voters for the show.
     
    Sample Input
    2
    1 1 2
    C1 D1
    D1 C1
    1 2 4
    C1 D1
    C1 D1
    C1 D2
    D2 C1
     
    Sample Output
    1
    3
     
     
    Source
    NWERC 2008
     
    Recommend
    lcy
     


    题目大意:

                   有v个观众,分别投出给自己喜欢的动物和讨厌的动物。

    假设一个观众喜欢的动物和另外一个观众喜欢的动物发生冲突,则让一个观众离开,问最后可以留下几个观众。


    例子分析:

    输入分析:

    2
    1 1 2
    C1 D1//第一个观众喜欢的是Cat1 讨厌的是Dog1
    D1 C1
    1 2 4
    C1 D1
    C1 D1
    C1 D2
    D2 C1

    输出分析:

    在第二个例子中。输出结果3是怎么得到的呢?我们把喜欢猫的放在一边喜欢狗的放在一边。然后依据冲突的产生情况建边,这时候我们就能得到下图:



    这时候最大匹配就是1----4, 2----4 , 3-----4 这三条边中的一条。上图选择了1----4这条边来举例。假设还想不明确的同学,在这里我们复习一下相关概念

    匹配:是一个边的集合,随意两条边不存在公共点。

    最大匹配:变数最多的匹配。




    题目分析:

                  把喜欢猫的放在一边,把喜欢狗的放在一边,若发生了冲突。则建一条边。则问题转化成二分图的最大独立集问题。


    须要注意一下的是这道题中的建边规则。

    这道题使用邻接矩阵实现的。耗时好像是390ms。用邻接表可能会快一些。



    代码例如以下:

    /*
     * g.cpp
     *
     *  Created on: 2015年3月14日
     *      Author: Administrator
     */
    
    
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    
    
    using namespace std;
    
    const int maxn = 501;
    
    int map[maxn][maxn];
    bool useif[maxn];
    int link[maxn];
    
    int n;
    
    bool can(int t){
    	int i;
    	for(i = 1 ; i <= n ; ++i){
    		if(useif[i] == false && map[t][i] == true){
    			useif[i] = true;
    			if(link[i] == -1 || can(link[i])){
    				link[i] = t;
    
    				return true;
    			}
    		}
    	}
    
    	return false;
    }
    
    int max_match(){
    	int num = 0;
    
    	int i;
    	for(i = 1 ; i <= n ; ++i){
    		memset(useif,false,sizeof(useif));
    		if(can(i) == true){
    			num++;
    		}
    	}
    
    	return num;
    }
    
    
    int main(){
    	string loves[maxn];
    	string hates[maxn];
    
    	int t;
    	scanf("%d",&t);
    	while(t--){
    		memset(map,false,sizeof(map));
    		memset(link,-1,sizeof(link));
    
    		int cats,dogs;
    		scanf("%d%d%d",&cats,&dogs,&n);
    
    		int i;
    		for(i = 1 ; i <= n ; ++i){
    			cin >> loves[i] >> hates[i];
    		}
    
    		/**
    		 * 这道题与其它题不同的地方就在于建边部分.
    		 * 所以其它部分不再加凝视,在这里仅仅为建边过程加凝视
    		 */
    		int j;
    		for(i = 1 ; i <= n ; ++i){//遍历每个观众的喜欢的动物
    			for(j = 1 ; j <= n ; ++j){//遍历每个观众讨厌的动物
    				//假设第i个观众喜欢的动物==第j个观众讨厌的动物 || 第i个观众讨厌的动物 == 第j个观众喜欢的动物。

    证明i和j之间存在冲突 if(loves[i] == hates[j] || hates[i] == loves[j]){ //为i和j建边 map[i][j] = true; map[j][i] = true; } } } printf("%d ",n - max_match()/2); } return 0; }





              


    版权声明:本文博主原创文章。博客,未经同意不得转载。

  • 相关阅读:
    Lily.Core.FileDataProvider文件管理使用范例。
    CruiseControl.NET,Nant持续集成(1)
    如何为当前进程设置环境变量?
    unix时间戳与datetime的转换函数
    Mac 平台下功能强大的Shimo软件使用指南
    如何解决源码包安装时的依赖性问题
    《Linux企业应用案例精解》一书配套视频发布
    ZoneMinder配置与使用
    网站优化IIS7下静态文件的优化
    WIN7常用功能的介绍
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4815864.html
Copyright © 2020-2023  润新知