• keras rnn做加减法


    一、背景

    学习rnn怎么使用

    例子: 输入两个数,做加法

    二、 代码赏析

    from __future__ import print_function
    from keras.models import Sequential
    from keras.engine.training import slice_X
    from keras.layers import Activation, TimeDistributed, Dense, RepeatVector, recurrent
    import numpy as np
    from six.moves import range
    
    
    class CharacterTable(object):
        '''
        Given a set of characters:
        + Encode them to a one hot integer representation
        + Decode the one hot integer representation to their character output
        + Decode a vector of probabilities to their character output
        '''
        def __init__(self, chars, maxlen):
            self.chars = sorted(set(chars))
            self.char_indices = dict((c, i) for i, c in enumerate(self.chars))
            self.indices_char = dict((i, c) for i, c in enumerate(self.chars))
            self.maxlen = maxlen
    
        def encode(self, C, maxlen=None):
            maxlen = maxlen if maxlen else self.maxlen
            X = np.zeros((maxlen, len(self.chars)))
            for i, c in enumerate(C):
                X[i, self.char_indices[c]] = 1
            return X
    
        def decode(self, X, calc_argmax=True):
            if calc_argmax:
                X = X.argmax(axis=-1)
            return ''.join(self.indices_char[x] for x in X)
    
    
    class colors:
        ok = '33[92m'
        fail = '33[91m'
        close = '33[0m'
    
    # Parameters for the model and dataset
    TRAINING_SIZE = 50000 #输入大小,即训练数据个数
    DIGITS = 3   #数字位数
    INVERT = True 
    # Try replacing GRU, or SimpleRNN
    RNN = recurrent.LSTM
    HIDDEN_SIZE = 128 #隐含层个数
    BATCH_SIZE = 128 
    LAYERS = 1 #几层
    MAXLEN = DIGITS + 1 + DIGITS #位数
    
    chars = '0123456789+ ' # char 列表
    ctable = CharacterTable(chars, MAXLEN)
    
    questions = []
    expected = []
    seen = set()
    print('Generating data...')
    while len(questions) < TRAINING_SIZE:
        f = lambda: int(''.join(np.random.choice(list('0123456789')) for i in range(np.random.randint(1, DIGITS + 1))))
        a, b = f(), f()
        # Skip any addition questions we've already seen
        # Also skip any such that X+Y == Y+X (hence the sorting)
        key = tuple(sorted((a, b)))
        if key in seen:
            continue
        seen.add(key)
        # Pad the data with spaces such that it is always MAXLEN
        q = '{}+{}'.format(a, b)
        query = q + ' ' * (MAXLEN - len(q))
        ans = str(a + b)
        # Answers can be of maximum size DIGITS + 1
        ans += ' ' * (DIGITS + 1 - len(ans)) #补位,凑够四位
        if INVERT:
            query = query[::-1]
        questions.append(query)
        expected.append(ans)
    print('Total addition questions:', len(questions))
    
    #向量化 print('Vectorization...') X = np.zeros((len(questions), MAXLEN, len(chars)), dtype=np.bool) y = np.zeros((len(questions), DIGITS + 1, len(chars)), dtype=np.bool) for i, sentence in enumerate(questions): X[i] = ctable.encode(sentence, maxlen=MAXLEN) for i, sentence in enumerate(expected): y[i] = ctable.encode(sentence, maxlen=DIGITS + 1) # Shuffle (X, y) in unison as the later parts of X will almost all be larger digits indices = np.arange(len(y)) np.random.shuffle(indices) #混淆 X = X[indices] y = y[indices] # Explicitly set apart 10% for validation data that we never train over split_at = len(X) - len(X) / 10 (X_train, X_val) = (slice_X(X, 0, split_at), slice_X(X, split_at)) (y_train, y_val) = (y[:split_at], y[split_at:]) print(X_train.shape) print(y_train.shape) print('Build model...') model = Sequential() # "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE # note: in a situation where your input sequences have a variable length, # use input_shape=(None, nb_feature). model.add(RNN(HIDDEN_SIZE, input_shape=(MAXLEN, len(chars)))) # For the decoder's input, we repeat the encoded input for each time step model.add(RepeatVector(DIGITS + 1)) #输入 × n 的意思, 貌似就是加强效果 # The decoder RNN could be multiple layers stacked or a single layer for _ in range(LAYERS): model.add(RNN(HIDDEN_SIZE, return_sequences=True)) # For each of step of the output sequence, decide which character should be chosen model.add(TimeDistributed(Dense(len(chars)))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model each generation and show predictions against the validation dataset for iteration in range(1, 200): print() print('-' * 50) print('Iteration', iteration) model.fit(X_train, y_train, batch_size=BATCH_SIZE, nb_epoch=1, validation_data=(X_val, y_val)) ### # Select 10 samples from the validation set at random so we can visualize errors for i in range(10): ind = np.random.randint(0, len(X_val)) rowX, rowy = X_val[np.array([ind])], y_val[np.array([ind])] preds = model.predict_classes(rowX, verbose=0) q = ctable.decode(rowX[0]) correct = ctable.decode(rowy[0]) guess = ctable.decode(preds[0], calc_argmax=False) print('Q', q[::-1] if INVERT else q) print('T', correct) print(colors.ok + '☑' + colors.close if correct == guess else colors.fail + '☒' + colors.close, guess) print('---')
  • 相关阅读:
    滑动条使用
    jquery日历练习
    JQuery 教程
    JS获取各种宽度、高度的简单介绍
    如何获取元素位置
    DOM练习
    DOM
    函数
    假期练习
    Uva 253 Cube painting
  • 原文地址:https://www.cnblogs.com/lavi/p/5883475.html
Copyright © 2020-2023  润新知