• R语言-选择样本数量


    功效分析:可以帮助在给定置信度的情况下,判断检测到给定效应值时所需的样本量,也可以在给定置信水平的情况下,计算某样本量内可以检测到的给定效应值的概率

    1.t检验

      案例:使用手机和司机反应时间的实验

    1 library(pwr)
    2 # n表示样本大小
    3 # d表示标准化均值之差
    4 # sig.level表示显著性水平
    5 # power为功效水平
    6 # type指的是检验类型
    7 # alternative指的是双侧检验还是单侧检验
    8 pwr.t.test(d=.8,sig.level = .05,power = .9,type = two.sample‘,alternative = two.sided‘)

    技术分享图片

      结论:每组需要34个样本(68)人才能保证有90%的把握检测到0.8效应值,并且最多5%会存在误差

    2.方差分析

      案例:对5组数据做方差分析,达到0.8的功效,效应值为0.25,选择0.5的显著水平.计算总体样本的大小

    # k表示组的个数
    # f表示效应值
    pwr.anova.test(k=5,f=.25,sig.level = .05,power = .8)

    技术分享图片

      结论:需要39*5,195受试者参与实验才能得出以上结果

    3.相关性

      案例:抑郁症和孤独的关系,零假设和研究假设为

         H0:p<=0.25和H1:p>0.25

        设定显著水平为0.05,耳光拒绝零假设,希望有90%的信息拒绝H0,需要多少测试者

    1 # r表示效应值
    2 pwr.r.test(r=.25,sig.level = .05,power = .90,alternative = greater‘)

    技术分享图片

      结论:需要134名受试者参与实验

    4.线性模型

      案例:老板的领导风格对员工满意度的影响,薪水和小费能解释30%员工满意度方差,领导风格能解释35%的方差,

          要达到90%置信度下,显著水平为0.05,需要多少受试者才能达到方差贡献率

      f2 = (0.35-0.3)/(1-0.35)=0.0769

    1 # u表示分子自由度
    2 # v表示分母自由度
    3 # f2表示效应值
    4 pwr.f2.test(u=3,f2=0.0769,sig.level = .05,power = .90)

    技术分享图片

      结论:v=总体样本-预测变量-1,所以N=v+7+1=187+7+1=193

    5.比例检验

      案例:某种药物有60%的治愈率,新药有65%的治愈率,现在有多少受试者才能体会到两种药物的差异

    1 pwr.2p.test(h=ES.h(.65,.6),sig.level = .05,power = .9,alternative = greater‘)

    技术分享图片

      结论:本案例中使用单边检验,得出需要1605名受试者才能得出两种药品的区别

    6.卡方检验

      卡方检验用来评价两个变量之间的关系,零假设是变量之间独立,拒绝零假设是变量不独立

      案例:研究晋升和种族的关系:样本中70%是白人,10%黑人,20%西班牙裔,相比20%的黑人和50%的西班牙裔,60%的白人更容易获得晋升

    1 prob <- matrix(c(.42,.28,.03,.07,.10,.10),byrow = T,nrow = 3)
    2 # 计算双因素列连表中的备择假设的效应值
    3 ES.w2(prob)
    4 # w是效应值,
    5 # df是自由度
    6 pwr.chisq.test(w=0.1853198,df=2,sig.level = .05,power = .90)

    技术分享图片

      结论:该实验需要369名测试者才能证明晋升和种族存在关联

    7.在新的情况下选择合适的效应值

      7.1单因素

     1 es <- seq(.1,.5,.01)
     2 nes <- length(es)
     3 samsize <- NULL
     4 for(i in 1:nes){
     5   result <- pwr.anova.test(k=5,f=es[i],sig.level = .05,power = .90)
     6   samsize[i] <- ceiling(result$n)
     7 }
     8 plot(samsize,es,type=l‘,lwd=2‘,col=red,
     9      ylab = Effect Size,
    10      xlab = Sample Szie,
    11      main = One way Anova with power=.90 and alpha=.05‘)

    技术分享图片

      结论:赝本数量高于200时,在增加样本是效果不明显

      7.2 绘制功效分析图

     1 # 1.生成一系列相关系数和功效值
     2 r <- seq(.1,.5,.01)
     3 nr <- length(r)
     4 
     5 p <- seq(.4,.9,.1)
     6 np <- length(p)
     7 
     8 # 2.获取样本大小
     9 samsize <- array(numeric(nr*np),dim = c(nr,np))
    10 
    11 for(i in 1:np){
    12   for(j in 1:nr){
    13     result <- pwr.r.test(n=NULL,r=r[j],sig.level = .05,power = p[i],alternative = two.sided)
    14     samsize[j,i] <- ceiling(result$n)
    15   }
    16 }
    17 
    18 # 3.创建图形
    19 xrange <- range(r)
    20 yrange <- round(range(samsize))
    21 colors <- rainbow(length(p))
    22 plot(xrange,yrange,type=n,
    23      xlab = Corrlation Coefficient,
    24      ylab = Sample Size)
    25 # 4.添加功效曲线
    26 for(i in 1:np){
    27   lines(r,samsize[,i],type=l‘,lwd=2,col=colors[i])
    28 }
    29 # 5.网格线
    30 abline(v=0,h=seq(0,yrange[2],50),lty=2,col=grey89)
    31 abline(h=0,v=seq(xrange[1],xrange[2],.02),lty=2,col=grey89)
    32 # 6.标题和注释
    33 title(Sample Size Estimation for Corrlation
    Sig=0.05)
    34 legend(topright‘,title = Power‘,as.character(p),fill=colors)

    技术分享图片

       结论:在40%的置信度下,要检测到0.2的相关性需要约75个样本,在90%的置信度下,要检测到相同的相关性需要大约260个样本

  • 相关阅读:
    牛客网提高五练习
    [BZOJ2820]YY的GCD
    [BZOJ2301][HAOI2011]Problem B
    [板子]快速读入
    复选框改成开关样式,滑动切换(纯css实现)
    rem的使用方法
    html添加删除输入框
    jq 实现全选反选,获取选中的值
    cdn引入vant框架使用在html页面使用
    为什么vuejs里面定义的template模板里定义的多个元素只显示一个
  • 原文地址:https://www.cnblogs.com/lantingg/p/9698525.html
Copyright © 2020-2023  润新知