• CF1025B Weakened Common Divisor 数学


    Weakened Common Divisor
    time limit per test
    1.5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    During the research on properties of the greatest common divisor (GCD) of a set of numbers, Ildar, a famous mathematician, introduced a brand new concept of the weakened common divisor (WCD) of a list of pairs of integers.

    For a given list of pairs of integers (a1,b1)(a1,b1), (a2,b2)(a2,b2), ..., (an,bn)(an,bn) their WCD is arbitrary integer greater than 11, such that it divides at least one element in each pair. WCD may not exist for some lists.

    For example, if the list looks like [(12,15),(25,18),(10,24)][(12,15),(25,18),(10,24)], then their WCD can be equal to 22, 33, 55 or 66 (each of these numbers is strictly greater than 11 and divides at least one number in each pair).

    You're currently pursuing your PhD degree under Ildar's mentorship, and that's why this problem was delegated to you. Your task is to calculate WCD efficiently.

    Input

    The first line contains a single integer nn (1n1500001≤n≤150000) — the number of pairs.

    Each of the next nn lines contains two integer values aiai, bibi (2ai,bi21092≤ai,bi≤2⋅109).

    Output

    Print a single integer — the WCD of the set of pairs.

    If there are multiple possible answers, output any; if there is no answer, print 1−1.

    Examples
    input
    Copy
    3
    17 18
    15 24
    12 15
    output
    Copy
    6
    input
    Copy
    2
    10 16
    7 17
    output
    Copy
    -1
    input
    Copy
    5
    90 108
    45 105
    75 40
    165 175
    33 30
    output
    Copy
    5
    Note

    In the first example the answer is 66 since it divides 1818 from the first pair, 2424 from the second and 1212 from the third ones. Note that other valid answers will also be accepted.

    In the second example there are no integers greater than 11 satisfying the conditions.

    In the third example one of the possible answers is 55. Note that, for example, 1515 is also allowed, but it's not necessary to maximize the output.

     题意:有n组数,每组数有两个数,求一个数是所有组数中的两个中一个的因子

    分析:分解第一组数得到他们的质因子,如果这些数有解,则这些因子肯定有一个是其他所有组数中至少一个数的因子

      枚举剩下每组数

    AC代码:

    #include <map>
    #include <set>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <vector>
    #include <string>
    #include <bitset>
    #include <cstring>
    #include <iomanip>
    #include <iostream>
    #include <algorithm>
    #define ls (r<<1)
    #define rs (r<<1|1)
    #define debug(a) cout << #a << " " << a << endl
    using namespace std;
    typedef long long ll;
    const ll maxn = 1e6+10;
    const ll mod = 998244353;
    const double pi = acos(-1.0);
    const double eps = 1e-8;
    ll a[maxn], b[maxn];
    int main() {
        ios::sync_with_stdio(0);
        ll n, x, y;
        set<ll> s, t;
        cin >> n;
        for( ll i = 0; i < n; i ++ ) {
            cin >> a[i] >> b[i];
        }
        x = a[0], y = b[0];
        for( ll i = 2; i*i <= x; i ++ ) {
            if( x%i == 0 ) {
                s.insert(i);
                while( x%i == 0 ) {
                    x /= i;
                }
            }
        }
        for( ll i = 2; i*i <= y; i ++ ) {
            if( y%i == 0 ) {
                s.insert(i);
                while( y%i == 0 ) {
                    y /= i;
                }
            }
        }
        if( x > 1 ) {
            s.insert(x);
        }
        if( y > 1 ) {
            s.insert(y);
        }
        bool flg = false;
        for( ll i : s ) {
            bool flag = true;
            for( ll j = 1; j < n; j ++ ) {
                if( a[j]%i && b[j]%i ) {
                    flag = false;
                    break;
                }
            }
            if(flag) {
                cout << i << endl;
                flg = true;
                break;
            }
        }
        if(!flg) {
            cout << -1 << endl;
        }
        return 0;
    }
    

      

    彼时当年少,莫负好时光。
  • 相关阅读:
    组员信息
    软件工程第四次作业
    软件工程第三次作业
    软件工程第二次作业——git的使用
    现代软件工程 第一章概论习题第1题 李艳薇
    代软件工程 第一章概论习题第10题 李艳薇
    现代软件工程 第一章概论习题第8题 李艳薇
    现代软件工程 第一章概论习题第5题 李艳薇
    现代软件工程 第一章概论习题第3,7,12题 陈宗雷
    计算机芯片的发展历史——软件工程第一章第11题 范世良
  • 原文地址:https://www.cnblogs.com/l609929321/p/9511394.html
Copyright © 2020-2023  润新知