• 计算机网络-链路层


    (转至CS-Notes:https://github.com/CyC2018/CS-Notes)

    基本问题

    封装成帧

    将网络层传下来的分组添加首部和尾部,用于标记帧的开始和结束。

    透明传输

    透明表示一个实际存在的事物看起来好像不存在一样。

    帧使用首部和尾部进行定界,如果帧的数据部分含有和首部尾部相同的内容,那么帧的开始和结束位置就会被错误的判定。需要在数据部分出现首部尾部相同的内容前面插入转义字符。如果数据部分出现转义字符,那么就在转义字符前面再加个转义字符。在接收端进行处理之后可以还原出原始数据。这个过程透明传输的内容是转义字符,用户察觉不到转义字符的存在。

    差错检测

    目前数据链路层广泛使用了循环冗余检验(CRC)来检查比特差错。

    信道分类

    广播信道

    一对多通信,一个节点发送的数据能够被广播信道上所有的节点接收到。

    所有的节点都在同一个广播信道上发送数据,因此需要有专门的控制方法进行协调,避免发生冲突(冲突也叫碰撞)。

    主要有两种控制方法进行协调,一个是使用信道复用技术,一是使用 CSMA/CD 协议。

    点对点信道

    一对一通信。

    因为不会发生碰撞,因此也比较简单,使用 PPP 协议进行控制。

    信道复用技术

    频分复用

    频分复用的所有主机在相同的时间占用不同的频率带宽资源。

    时分复用

    时分复用的所有主机在不同的时间占用相同的频率带宽资源。

    使用频分复用和时分复用进行通信,在通信的过程中主机会一直占用一部分信道资源。但是由于计算机数据的突发性质,通信过程没必要一直占用信道资源而不让出给其它用户使用,因此这两种方式对信道的利用率都不高。

    统计时分复用

    是对时分复用的一种改进,不固定每个用户在时分复用帧中的位置,只要有数据就集中起来组成统计时分复用帧然后发送。

    波分复用

    光的频分复用。由于光的频率很高,因此习惯上用波长而不是频率来表示所使用的光载波。

    码分复用

    为每个用户分配 m bit 的码片,并且所有的码片正交,对于任意两个码片 和 有

    为了讨论方便,取 m=8,设码片 为 00011011。在拥有该码片的用户发送比特 1 时就发送该码片,发送比特 0 时就发送该码片的反码 11100100。

    在计算时将 00011011 记作 (-1 -1 -1 +1 +1 -1 +1 +1),可以得到

    其中 的反码。

    利用上面的式子我们知道,当接收端使用码片 对接收到的数据进行内积运算时,结果为 0 的是其它用户发送的数据,结果为 1 的是用户发送的比特 1,结果为 -1 的是用户发送的比特 0。

    码分复用需要发送的数据量为原先的 m 倍。

    CSMA/CD 协议

    CSMA/CD 表示载波监听多点接入 / 碰撞检测。

    • 多点接入 :说明这是总线型网络,许多主机以多点的方式连接到总线上。
    • 载波监听 :每个主机都必须不停地监听信道。在发送前,如果监听到信道正在使用,就必须等待。
    • 碰撞检测 :在发送中,如果监听到信道已有其它主机正在发送数据,就表示发生了碰撞。虽然每个主机在发送数据之前都已经监听到信道为空闲,但是由于电磁波的传播时延的存在,还是有可能会发生碰撞。

    记端到端的传播时延为 τ,最先发送的站点最多经过 2τ 就可以知道是否发生了碰撞,称 2τ 为 争用期 。只有经过争用期之后还没有检测到碰撞,才能肯定这次发送不会发生碰撞。

    当发生碰撞时,站点要停止发送,等待一段时间再发送。这个时间采用 截断二进制指数退避算法 来确定。从离散的整数集合 {0, 1, .., (2k-1)} 中随机取出一个数,记作 r,然后取 r 倍的争用期作为重传等待时间。

    PPP 协议

    互联网用户通常需要连接到某个 ISP 之后才能接入到互联网,PPP 协议是用户计算机和 ISP 进行通信时所使用的数据链路层协议。

    PPP 的帧格式:

    • F 字段为帧的定界符
    • A 和 C 字段暂时没有意义
    • FCS 字段是使用 CRC 的检验序列
    • 信息部分的长度不超过 1500

    MAC 地址

    MAC 地址是链路层地址,长度为 6 字节(48 位),用于唯一标识网络适配器(网卡)。

    一台主机拥有多少个网络适配器就有多少个 MAC 地址。例如笔记本电脑普遍存在无线网络适配器和有线网络适配器,因此就有两个 MAC 地址。

    局域网

    局域网是一种典型的广播信道,主要特点是网络为一个单位所拥有,且地理范围和站点数目均有限。

    主要有以太网、令牌环网、FDDI 和 ATM 等局域网技术,目前以太网占领着有线局域网市场。

    可以按照网络拓扑结构对局域网进行分类:

    以太网

    以太网是一种星型拓扑结构局域网。

    早期使用集线器进行连接,集线器是一种物理层设备, 作用于比特而不是帧,当一个比特到达接口时,集线器重新生成这个比特,并将其能量强度放大,从而扩大网络的传输距离,之后再将这个比特发送到其它所有接口。如果集线器同时收到两个不同接口的帧,那么就发生了碰撞。

    目前以太网使用交换机替代了集线器,交换机是一种链路层设备,它不会发生碰撞,能根据 MAC 地址进行存储转发。

    以太网帧格式:

    • 类型 :标记上层使用的协议;
    • 数据 :长度在 46-1500 之间,如果太小则需要填充;
    • FCS :帧检验序列,使用的是 CRC 检验(循环冗余校验)方法;

    交换机

    交换机具有自学习能力,学习的是交换表的内容,交换表中存储着 MAC 地址到接口的映射。

    正是由于这种自学习能力,因此交换机是一种即插即用设备,不需要网络管理员手动配置交换表内容。

    下图中,交换机有 4 个接口,主机 A 向主机 B 发送数据帧时,交换机把主机 A 到接口 1 的映射写入交换表中。为了发送数据帧到 B,先查交换表,此时没有主机 B 的表项,那么主机 A 就发送广播帧,主机 C 和主机 D 会丢弃该帧,主机 B 回应该帧向主机 A 发送数据包时,交换机查找交换表得到主机 A 映射的接口为 1,就发送数据帧到接口 1,同时交换机添加主机 B 到接口 2 的映射。

    虚拟局域网

    虚拟局域网可以建立与物理位置无关的逻辑组,只有在同一个虚拟局域网中的成员才会收到链路层广播信息。

    例如下图中 (A1, A2, A3, A4) 属于一个虚拟局域网,A1 发送的广播会被 A2、A3、A4 收到,而其它站点收不到。

    使用 VLAN 干线连接来建立虚拟局域网,每台交换机上的一个特殊接口被设置为干线接口,以互连 VLAN 交换机。IEEE 定义了一种扩展的以太网帧格式 802.1Q,它在标准以太网帧上加进了 4 字节首部 VLAN 标签,用于表示该帧属于哪一个虚拟局域网。

  • 相关阅读:
    【最大流之EdmondsKarp算法】【HDU1532】模板题
    【矩阵乘法经典应用】【ZOJ3497】【Mistwa】
    【矩阵专题】
    【斐波拉契+数论+同余】【ZOJ3707】Calculate Prime S
    对拍BAT
    【枚举+贪心】【ZOJ3715】【Kindergarten Electiond】
    计算(a/b)%c
    斐波拉契数列性质
    【类克鲁斯卡尔做法+枚举最小边】【HDU1598】【find the most comfortable road】
    【并查集+拓扑排序】【HDU1811】【Rank of Tetris】
  • 原文地址:https://www.cnblogs.com/kylinxxx/p/13784756.html
Copyright © 2020-2023  润新知