Distinct Subsequences
问题:
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
思路:
动态规划
我的代码:
public class Solution { public int numDistinct(String S, String T) { if(S == null || S.length() == 0 || T == null || T.length() == 0) return 0; int cols = S.length(); int rows = T.length(); if(rows > cols) return 0; int[][] dp = new int[rows+1][cols+1]; for(int j = 0; j <= cols; j++) { dp[0][j] = 1; } for(int i = 1; i <= rows; i++) { for(int j = 1; j <= cols; j++) { dp[i][j] = dp[i][j-1]; if(S.charAt(j-1) == T.charAt(i-1)) { dp[i][j] += dp[i-1][j-1]; } } } return dp[rows][cols]; } }
学习之处:
- 之前不知道动态规划方程怎么写,今天晚上强化了这方面,认真的思考了,想了想方法,现在总算有点眉目了,两道hard的题,都自己想出来,然后ac
- 在这里再次强调一下如何写动态规划方程,多做题,自然就有感觉了,另外动态规划考察的是逆向思维,从dfs逆向思维到动态规划方程中。
- 两种模式 二元动态规划方程f(m,n) = f(m,n-1)+f(m-1,n-1) 一元动规方程 f(n)= f(n-1)+f(n-2)+...+f(1)