• 《DSP using MATLAB》Problem 3.3


          按照题目的意思需要利用DTFT的性质,得到序列的DTFT结果(公式表示),本人数学功底太差,就不写了,直接用

    书中的方法计算并画图。

    代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 3.3 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    
    % ----------------------------------
    %            x1(n)
    % ----------------------------------
    n1_start = -3; n1_end = 13;
    n1 = [n1_start : n1_end]; 
    
    x1 = (2 * 0.5.^ (n1)) .* stepseq(-2, n1_start, n1_end); 
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 x1(n)');
    set(gcf,'Color','white'); 
    stem(n1, x1); 
    xlabel('n'); ylabel('x1');  
    title('x1(n) sequence'); grid on;
    
    M = 500;
    k = [-M:M];        % [-pi, pi]
    %k = [0:M];        % [0, pi]
    w = (pi/M) * k;
    
    [X1] = dtft(x1, n1, w);                            
    
    magX1 = abs(X1); angX1 = angle(X1); realX1 = real(X1); imagX1 = imag(X1);
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 DTFT of x1(n)');; 
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, magX1); grid on; 
    title('Magnitude Part');
    xlabel('frequency in pi units'); ylabel('Magnitude'); 
    subplot(2,1,2); plot(w/pi, angX1); grid on;
    title('Angle Part');
    xlabel('frequency in pi units'); ylabel('Radians');
    
    
    X1_chk = 8*exp(j*2*w) + 4*exp(j*w) + 2 ./ (1-0.5*exp(-j*w));
    magX1_chk = abs(X1_chk); angX1_chk = angle(X1_chk); realX1_chk = real(X1_chk); imagX1_chk = imag(X1_chk);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 X1(w) by formular');; 
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, magX1_chk); grid on; 
    title('Magnitude Part');
    xlabel('frequency in pi units'); ylabel('Magnitude'); 
    subplot(2,1,2); plot(w/pi, angX1_chk); grid on;
    title('Angle Part');
    xlabel('frequency in pi units'); ylabel('Radians');
    
    
    % -------------------------------------
    %            x2(n)
    % -------------------------------------
    n2_start = -9; n2_end = 15;
    n2 = [n2_start : n2_end]; 
    
    x2 = (0.6 .^ (abs(n2))) .* (stepseq(-10, n2_start, n2_end) - stepseq(11, n2_start, n2_end)); 
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 x2(n)');
    set(gcf,'Color','white'); 
    stem(n2, x2); 
    xlabel('n'); ylabel('x2');  
    title('x2(n) sequence'); grid on;
    
    
    M = 500;
    k = [-M:M];        % [-pi, pi]
    %k = [0:M];        % [0, pi]
    w = (pi/M) * k;
    
    [X2] = dtft(x2, n2, w);                            
    
    magX2 = abs(X2); angX2 = angle(X2); realX2 = real(X2); imagX2 = imag(X2);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 DTFT of x2(n)');; 
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, magX2); grid on; 
    title('Magnitude Part');
    xlabel('frequency in pi units'); ylabel('Magnitude'); 
    subplot(2,1,2); plot(w/pi, angX2); grid on;
    title('Angle Part');
    xlabel('frequency in pi units'); ylabel('Radians');
    
    
    % -------------------------------------
    %            x3(n)
    % -------------------------------------
    n3_start = -3; n3_end = 10;
    n3 = [n3_start : n3_end]; 
    
    x3 = ( n3 .* (0.9 .^ (n3))) .* stepseq(-3, n3_start, n3_end); 
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 x3(n)');
    set(gcf,'Color','white'); 
    stem(n3, x3); 
    xlabel('n'); ylabel('x3');  
    title('x3(n) sequence'); grid on;
    
    M = 500;
    k = [-M:M];        % [-pi, pi]
    %k = [0:M];        % [0, pi]
    w = (pi/M) * k;
    
    [X3] = dtft(x3, n3, w);                            
    
    magX3 = abs(X3); angX3 = angle(X3); realX3= real(X3); imagX3 = imag(X3);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 DTFT of x3(n)');; 
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, magX3); grid on; 
    title('Magnitude Part');
    xlabel('frequency in pi units'); ylabel('Magnitude'); 
    subplot(2,1,2); plot(w/pi, angX3); grid on;
    title('Angle Part');
    xlabel('frequency in pi units'); ylabel('Radians');
    
    
    % -------------------------------------
    %            x4(n)
    % -------------------------------------
    n4_start = 0; n4_end = 50;
    n4 = [n4_start : n4_end]; 
    
    x4 = (n4 + 3) .* (0.8 .^ (n4-1)) .* stepseq(2, n4_start, n4_end); 
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 x4(n)');
    set(gcf,'Color','white'); 
    stem(n4, x4, 'r', 'filled'); 
    xlabel('n'); ylabel('x4');  
    title('x4(n) sequence'); grid on;
    
    M = 500;
    k = [-M:M];        % [-pi, pi]
    %k = [0:M];        % [0, pi]
    w = (pi/M) * k;
    
    [X4] = dtft(x4, n4, w);                            
    
    magX4 = abs(X4); angX4 = angle(X4); realX4= real(X4); imagX4 = imag(X4);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 DTFT of x4(n)');; 
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, magX4); grid on; 
    title('Magnitude Part');
    xlabel('frequency in pi units'); ylabel('Magnitude'); 
    subplot(2,1,2); plot(w/pi, angX4); grid on;
    title('Angle Part');
    xlabel('frequency in pi units'); ylabel('Radians');
    
    
    % -------------------------------------
    %            x5(n)
    % -------------------------------------
    n5_start = 0; n5_end = 30;
    n5 = [n5_start : n5_end]; 
    
    x5 = 4 * (-7 .^ (n5)) .* cos(0.25*pi*n5) .* stepseq(0, n5_start, n5_end); 
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 x5(n)');
    set(gcf,'Color','white'); 
    stem(n5, x5, 'r', 'filled'); 
    xlabel('n'); ylabel('x5');  
    title('x5(n) sequence'); grid on;
    
    M = 500;
    k = [-M:M];        % [-pi, pi]
    %k = [0:M];        % [0, pi]
    w = (pi/M) * k;
    
    [X5] = dtft(x5, n5, w);                            
    
    magX5 = abs(X5); angX5 = angle(X5); realX5= real(X5); imagX5 = imag(X5);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.3 DTFT of x5(n)');
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, magX5); grid on; 
    title('Magnitude Part');
    xlabel('frequency in pi units'); ylabel('Magnitude'); 
    subplot(2,1,2); plot(w/pi, angX5); grid on;
    title('Angle Part');
    xlabel('frequency in pi units'); ylabel('Radians');
    

      运行结果:

    1、原始序列及其DTFT

    2、

    3、

    4、

    5、

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    学习笔记
    js闭包
    一个非必现问题的定位和反思
    C语言的设计模式面向对象机制的实现(一)
    多线程和单线程的执行效率问题
    python 多态
    C语言的设计模式接口隔离
    构建表达式二叉树
    C语言的设计模式依赖倒置
    C语言的设计模式单一职责
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/8051878.html
Copyright © 2020-2023  润新知