• kubernetes 安装手册(成功版)


    管理组件采用staticPod或者daemonSet形式跑的,宿主机os能跑docker应该本篇教程能大多适用
    安装完成仅供学习和实验

    本次安裝的版本:

    • Kubernetes v1.10.0 (1.10.0和1.10.3亲测成功)
    • CNI v0.6.0
    • Etcd v3.1.13
    • Calico v3.0.4
    • Docker CE latest version(18.03)

    节点信息
    本教学将以下列节点数与规格来进行部署Kubernetes集群,系统可采用Ubuntu 16.xCentOS 7.x

    IPHostnameCPUMemory
    192.16.35.11 K8S-M1 1 4G
    192.16.35.12 K8S-M2 1 4G
    192.16.35.13 K8S-M3 1 4G
    192.16.35.14 K8S-N1 1 4G
    192.16.35.15 K8S-N2 1 4G
    192.16.35.16 K8S-N3 1 4G

    另外由所有master节点提供一组VIP 192.16.35.10

    • 所有操作全部用root使用者进行(方便用),以SRE来说不推荐。
    • 可以下载Vagrantfile来建立Virtualbox虚拟机集群。不过需要注意机器资源是否足够

    事前准备

    • 所有机器彼此网路互通,并且k8s-m1SSH登入其他节点为passwdless。
    • 所有防火墙与SELinux 已关闭。如CentOS:

      1
      2
      3
      4
      $ systemctl stop firewalld && systemctl disable firewalld
      $ setenforce 0
      $ vim /etc/selinux/config
      SELINUX=disabled
    • 所有机器需要设定/etc/hosts解析到所有集群主机。

      1
      2
      3
      4
      5
      6
      7
      ...
      192.16.35.11 k8s-m1
      192.16.35.12 k8s-m2
      192.16.35.13 k8s-m3
      192.16.35.14 k8s-n1
      192.16.35.15 k8s-n2
      192.16.35.16 k8s-n3
    • 所有机器需要安装Docker CE 版本的容器引擎:

      1
      $ curl -fsSL "https://get.docker.com/" | sh
    • 不管是在Ubuntu或CentOS都只需要执行该指令就会自动安装最新版Docker。
    • CentOS安装完成后,需要再执行以下指令:
    1
    $ systemctl enable docker && systemctl start docker
    • 所有机器需要设定/etc/sysctl.d/k8s.conf的系统参数。

      1
      2
      3
      4
      5
      6
      7
      $ cat <<EOF > /etc/sysctl.d/k8s.conf
      net.ipv4.ip_forward = 1
      net.bridge.bridge-nf-call-ip6tables = 1
      net.bridge.bridge-nf-call-iptables = 1
      EOF

      $ sysctl -p /etc/sysctl.d/k8s.conf
    • Kubernetes v1.8+要求关闭系统Swap,若不关闭则需要修改kubelet设定参数,在所有机器使用以下指令关闭swap并注释掉/etc/fstab中swap的行:

      1
      2
      $ swapoff -a && sysctl -w vm.swappiness=0
      $ sed -ri '/^[^#]*swap/s@^@#@' /etc/fstab
    • 确保getenforce的值是Disabled,如果不是请重启

    • 所有机器提前拉取以下镜像

    1
    2
    3
    4
    REPOSITORY               TAG                 IMAGE ID            CREATED             SIZE
    quay.io/calico/node v3.0.4 5361c5a52912 8 weeks ago 278MB
    quay.io/calico/cni v2.0.3 cef0252b1749 2 months ago 69.1MB
    k8s.gcr.io/pause-amd64 3.1 da86e6ba6ca1 5 months ago 742kB

    这三个因为墙的原因会拉取不到,我已经save成文件了(有工具的可以直接pull上面镜像)
    文件地址是https://pan.baidu.com/s/1v7uN4ht-7qvA1uk9ZMmuMA
    上面是百度云,下载不了或者限速的可以用下面七牛云地址下载并导入镜像

    1
    2
    $ wget http://ols7lqkih.bkt.clouddn.com/images.tar.gz
    $ docker load -i images.tar.gz
    • 所有Node提前拉取以下镜像
    1
    quay.io/calico/kube-controllers                      v2.0.2              0754e1c707e7        2 months ago        55.1MB

    同样被墙了,拉取不到用我的七牛云地址导入

    1
    2
    $ wget http://ols7lqkih.bkt.clouddn.com/calico-kube-proxy-adm64.tar.gz
    $ docker load -i calico-kube-proxy-adm64.tar.gz
    • 所有机器下载Kubernetes二进制执行档:

    无越墙工具的,我已把kubectl和kubelet上传到我的七牛云了,使用下面下载

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    $ wget http://ols7lqkih.bkt.clouddn.com/kubelet -O /usr/local/bin/kubelet
    $ chmod +x /usr/local/bin/kubelet
    # node 请忽略下载 kubectl
    $ wget http://ols7lqkih.bkt.clouddn.com/kubectl -O /usr/local/bin/kubectl
    $ chmod +x /usr/local/bin/kubectl

    # md5值为以下,自行对比下看看文件是否损坏了

    [root@k8s-m1 ~]# md5sum /usr/local/bin/kubelet
    a3ced404a71f94d2fa9230635ed4e407 kubelet
    [root@k8s-m1 ~]# md5sum /usr/local/bin/kubectl
    e1f801301614463e1f13cf28b4443608 kubectl

    有工具的使用下面的原地址

    1
    2
    3
    4
    5
    6
    7
    $ export KUBE_URL="https://storage.googleapis.com/kubernetes-release/release/v1.10.0/bin/linux/amd64"
    $ wget "${KUBE_URL}/kubelet" -O /usr/local/bin/kubelet
    $ chmod +x /usr/local/bin/kubelet

    # node 请忽略下载 kubectl
    $ wget "${KUBE_URL}/kubectl" -O /usr/local/bin/kubectl
    $ chmod +x /usr/local/bin/kubectl
    • 所有机器下载Kubernetes CNI 二进制执行档:(centos命令报错的话建议直接下载后解压到目录里)

      1
      2
      3
      mkdir -p /opt/cni/bin && cd /opt/cni/bin
      export CNI_URL="https://github.com/containernetworking/plugins/releases/download"
      wget -qO- "${CNI_URL}/v0.6.0/cni-plugins-amd64-v0.6.0.tgz" | tar -zx
    • k8s-m1需要安裝CFSSL工具,这将会用來建立 TLS Certificates。

      1
      2
      3
      4
      $ export CFSSL_URL="https://pkg.cfssl.org/R1.2"
      $ wget "${CFSSL_URL}/cfssl_linux-amd64" -O /usr/local/bin/cfssl
      $ wget "${CFSSL_URL}/cfssljson_linux-amd64" -O /usr/local/bin/cfssljson
      $ chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson

    建立集群CA keys 与Certificates
    在这个部分,将需要产生多个元件的Certificates,这包含Etcd、Kubernetes 元件等,并且每个集群都会有一个根数位凭证认证机构(Root Certificate Authority)被用在认证API Server 与Kubelet 端的凭证。

    • PS这边要注意CA JSON档的CN(Common Name)O(Organization)等内容是会影响Kubernetes元件认证的。

    Etcd
    首先在k8s-m1建立/etc/etcd/ssl文件夹,然后进入目录完成以下操作。

    1
    2
    $ mkdir -p /etc/etcd/ssl && cd /etc/etcd/ssl
    $ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"

    下载ca-config.jsonetcd-ca-csr.json文件,并从CSR json产生CA keys与Certificate:

    1
    2
    $ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/etcd-ca-csr.json"
    $ cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare etcd-ca

    下载etcd-csr.json文件,并产生Etcd证书:

    1
    2
    3
    4
    5
    6
    7
    8
    $ wget "${PKI_URL}/etcd-csr.json"
    $ cfssl gencert
    -ca=etcd-ca.pem
    -ca-key=etcd-ca-key.pem
    -config=ca-config.json
    -hostname=127.0.0.1,192.16.35.11,192.16.35.12,192.16.35.13
    -profile=kubernetes
    etcd-csr.json | cfssljson -bare etcd
    • -hostname需修改成所有masters 节点。

    完成后删除不必要文件:

    1
    $ rm -rf *.json *.csr

    确认/etc/etcd/ssl有以下文件:

    1
    2
    $ ls /etc/etcd/ssl
    etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pem

    复制相关文件至其他Etcd节点,这边为所有master节点:

    1
    2
    3
    4
    5
    6
    7
    $ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/etcd/ssl"
    for FILE in etcd-ca-key.pem etcd-ca.pem etcd-key.pem etcd.pem; do
    scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
    done
    done

    Kubernetes
    k8s-m1建立pki文件夹,然后进入目录完成以下章节操作。

    1
    2
    3
    $ mkdir -p /etc/kubernetes/pki && cd /etc/kubernetes/pki
    $ export PKI_URL="https://kairen.github.io/files/manual-v1.10/pki"
    $ export KUBE_APISERVER="https://192.16.35.10:6443"

    下载ca-config.jsonca-csr.json文件,并产生CA凭证:

    1
    2
    3
    4
    $ wget "${PKI_URL}/ca-config.json" "${PKI_URL}/ca-csr.json"
    $ cfssl gencert -initca ca-csr.json | cfssljson -bare ca
    $ ls ca*.pem
    ca-key.pem ca.pem

    API Server Certificate
    下载apiserver-csr.json文件,并产生kube-apiserver凭证:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    $ wget "${PKI_URL}/apiserver-csr.json"
    $ cfssl gencert
    -ca=ca.pem
    -ca-key=ca-key.pem
    -config=ca-config.json
    -hostname=10.96.0.1,192.16.35.10,127.0.0.1,kubernetes.default
    -profile=kubernetes
    apiserver-csr.json | cfssljson -bare apiserver

    $ ls apiserver*.pem
    apiserver-key.pem apiserver.pem
    • 这边-hostname10.96.0.1是Cluster IP的Kubernetes端点;
    • 192.16.35.10为虚拟IP 位址(VIP);
    • kubernetes.default为Kubernets DN。

    Front Proxy Certificate
    下载front-proxy-ca-csr.json文件,并产生Front Proxy CA金钥,Front Proxy主要是用在API aggregator上:

    1
    2
    3
    4
    5
    6
    $ wget "${PKI_URL}/front-proxy-ca-csr.json"
    $ cfssl gencert
    -initca front-proxy-ca-csr.json | cfssljson -bare front-proxy-ca

    $ ls front-proxy-ca*.pem
    front-proxy-ca-key.pem front-proxy-ca.pem

    下载front-proxy-client-csr.json档案,并产生front-proxy-client证书:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    $ wget "${PKI_URL}/front-proxy-client-csr.json"
    $ cfssl gencert
    -ca=front-proxy-ca.pem
    -ca-key=front-proxy-ca-key.pem
    -config=ca-config.json
    -profile=kubernetes
    front-proxy-client-csr.json | cfssljson -bare front-proxy-client

    $ ls front-proxy-client*.pem
    front-proxy-client-key.pem front-proxy-client.pem

    Admin Certificate
    下载admin-csr.json文件,并产生admin certificate凭证:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    $ wget "${PKI_URL}/admin-csr.json"
    $ cfssl gencert
    -ca=ca.pem
    -ca-key=ca-key.pem
    -config=ca-config.json
    -profile=kubernetes
    admin-csr.json | cfssljson -bare admin

    $ ls admin*.pem
    admin-key.pem admin.pem

    接着通过以下指令产生名称为admin.conf的kubeconfig文件:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    # admin set cluster
    $ kubectl config set-cluster kubernetes
    --certificate-authority=ca.pem
    --embed-certs=true
    --server=${KUBE_APISERVER}
    --kubeconfig=../admin.conf

    # admin set credentials
    $ kubectl config set-credentials kubernetes-admin
    --client-certificate=admin.pem
    --client-key=admin-key.pem
    --embed-certs=true
    --kubeconfig=../admin.conf

    # admin set context
    $ kubectl config set-context kubernetes-admin@kubernetes
    --cluster=kubernetes
    --user=kubernetes-admin
    --kubeconfig=../admin.conf

    # admin set default context
    $ kubectl config use-context kubernetes-admin@kubernetes
    --kubeconfig=../admin.conf

    Controller Manager Certificate
    下载manager-csr.json档案,并产生kube-controller-manager certificate凭证:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    $ wget "${PKI_URL}/manager-csr.json"
    $ cfssl gencert
    -ca=ca.pem
    -ca-key=ca-key.pem
    -config=ca-config.json
    -profile=kubernetes
    manager-csr.json | cfssljson -bare controller-manager

    $ ls controller-manager*.pem
    controller-manager-key.pem controller-manager.pem

    接着通过以下指令产生名称为controller-manager.conf的kubeconfig文件:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    # controller-manager set cluster
    $ kubectl config set-cluster kubernetes
    --certificate-authority=ca.pem
    --embed-certs=true
    --server=${KUBE_APISERVER}
    --kubeconfig=../controller-manager.conf

    # controller-manager set credentials
    $ kubectl config set-credentials system:kube-controller-manager
    --client-certificate=controller-manager.pem
    --client-key=controller-manager-key.pem
    --embed-certs=true
    --kubeconfig=../controller-manager.conf

    # controller-manager set context
    $ kubectl config set-context system:kube-controller-manager@kubernetes
    --cluster=kubernetes
    --user=system:kube-controller-manager
    --kubeconfig=../controller-manager.conf

    # controller-manager set default context
    $ kubectl config use-context system:kube-controller-manager@kubernetes
    --kubeconfig=../controller-manager.conf

    Scheduler Certificate
    下载scheduler-csr.json文件,并产生kube-scheduler certificate凭证:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    $ wget "${PKI_URL}/scheduler-csr.json"
    $ cfssl gencert
    -ca=ca.pem
    -ca-key=ca-key.pem
    -config=ca-config.json
    -profile=kubernetes
    scheduler-csr.json | cfssljson -bare scheduler

    $ ls scheduler*.pem
    scheduler-key.pem scheduler.pem

    接着通过以下指令产生名称为scheduler.conf的kubeconfig文件:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    # scheduler set cluster
    $ kubectl config set-cluster kubernetes
    --certificate-authority=ca.pem
    --embed-certs=true
    --server=${KUBE_APISERVER}
    --kubeconfig=../scheduler.conf

    # scheduler set credentials
    $ kubectl config set-credentials system:kube-scheduler
    --client-certificate=scheduler.pem
    --client-key=scheduler-key.pem
    --embed-certs=true
    --kubeconfig=../scheduler.conf

    # scheduler set context
    $ kubectl config set-context system:kube-scheduler@kubernetes
    --cluster=kubernetes
    --user=system:kube-scheduler
    --kubeconfig=../scheduler.conf

    # scheduler use default context
    $ kubectl config use-context system:kube-scheduler@kubernetes
    --kubeconfig=../scheduler.conf

    Master Kubelet Certificate
    接着在k8s-m1下载kubelet-csr.json档案,并产生凭证:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    $ wget "${PKI_URL}/kubelet-csr.json"
    $ for NODE in k8s-m1 k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    cp kubelet-csr.json kubelet-$NODE-csr.json;
    sed -i "s/$NODE/$NODE/g" kubelet-$NODE-csr.json;
    cfssl gencert
    -ca=ca.pem
    -ca-key=ca-key.pem
    -config=ca-config.json
    -hostname=$NODE
    -profile=kubernetes
    kubelet-$NODE-csr.json | cfssljson -bare kubelet-$NODE
    done

    $ ls kubelet*.pem
    kubelet-k8s-m1-key.pem kubelet-k8s-m1.pem kubelet-k8s-m2-key.pem kubelet-k8s-m2.pem kubelet-k8s-m3-key.pem kubelet-k8s-m3.pem
    • 这边需要依据节点修改-hostname$NODE

    完成后复制kubelet凭证至其他master节点:

    1
    2
    3
    4
    5
    6
    7
    $ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/kubernetes/pki"
    for FILE in kubelet-$NODE-key.pem kubelet-$NODE.pem ca.pem; do
    scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE}
    done
    done

    接着在k8s-m1执行以下指令产生名称为kubelet.conf的kubeconfig文件:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    $ for NODE in k8s-m1 k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    ssh ${NODE} "cd /etc/kubernetes/pki &&
    kubectl config set-cluster kubernetes
    --certificate-authority=ca.pem
    --embed-certs=true
    --server=${KUBE_APISERVER}
    --kubeconfig=../kubelet.conf &&
    kubectl config set-credentials system:node:${NODE}
    --client-certificate=kubelet-${NODE}.pem
    --client-key=kubelet-${NODE}-key.pem
    --embed-certs=true
    --kubeconfig=../kubelet.conf &&
    kubectl config set-context system:node:${NODE}@kubernetes
    --cluster=kubernetes
    --user=system:node:${NODE}
    --kubeconfig=../kubelet.conf &&
    kubectl config use-context system:node:${NODE}@kubernetes
    --kubeconfig=../kubelet.conf &&
    rm kubelet-${NODE}.pem kubelet-${NODE}-key.pem"
    done

    Service Account Key
    Service account 不是通过CA 进行认证,因此不要通过CA 来做Service account key 的检查,这边建立一组Private 与Public 密钥提供给Service account key 使用:
    k8s-m1执行以下指令

    1
    2
    3
    4
    $ openssl genrsa -out sa.key 2048
    $ openssl rsa -in sa.key -pubout -out sa.pub
    $ ls sa.*
    sa.key sa.pub

    删除不必要文件
    所有资讯准备完成后,就可以将一些不必要文件删除:

    1
    $ rm -rf *.json *.csr scheduler*.pem controller-manager*.pem admin*.pem kubelet*.pem

    复制文件至其他节点
    复制凭证文件至其他master节点:

    1
    2
    3
    4
    5
    6
    $ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    for FILE in $(ls /etc/kubernetes/pki/); do
    scp /etc/kubernetes/pki/${FILE} ${NODE}:/etc/kubernetes/pki/${FILE}
    done
    done

    复制Kubernetes config文件至其他master节点:

    1
    2
    3
    4
    5
    6
    $ for NODE in k8s-m2 k8s-m3; do
    echo "--- $NODE ---"
    for FILE in admin.conf controller-manager.conf scheduler.conf; do
    scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
    done
    done

    Kubernetes Masters
    本部分将说明如何建立与设定Kubernetes Master 角色,过程中会部署以下元件:

    • kube-apiserver:提供REST APIs,包含授权、认证与状态储存等。
    • kube-controller-manager:负责维护集群的状态,如自动扩展,滚动更新等。
    • kube-scheduler:负责资源排程,依据预定的排程策略将Pod分配到对应节点上。
    • Etcd:储存集群所有状态的Key/Value储存系统。
    • HAProxy:提供负载平衡器。
    • Keepalived:提供虚拟网路位址(VIP)。

    部署与设定
    首先在所有master节点下载部署元件的YAML文件,这边不采用二进制执行档与Systemd来管理这些元件,全部采用Static Pod来达成。这边将档案下载至/etc/kubernetes/manifests目录:

    (友情提醒镜像需要工具才能pull
    没有工具请把镜像的gcr.io/google_containers和k8s.gcr.io部分换成mirrorgooglecontainers
    例如
    gcr.io/google_containers/kube-apiserver-amd64 改成
    mirrorgooglecontainers/kube-scheduler-amd64
    keepalived里的interface网卡名改为各自宿主机的网卡名
    后续的所有文件里的镜像名同理(没有越墙工具就这样做)
    )

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    $ export CORE_URL="https://kairen.github.io/files/manual-v1.10/master"
    $ mkdir -p /etc/kubernetes/manifests && cd /etc/kubernetes/manifests
    $ for FILE in kube-apiserver kube-controller-manager kube-scheduler haproxy keepalived etcd etcd.config; do
    wget "${CORE_URL}/${FILE}.yml.conf" -O ${FILE}.yml
    if [ ${FILE} == "etcd.config" ]; then
    mv etcd.config.yml /etc/etcd/etcd.config.yml
    sed -i "s/${HOSTNAME}/${HOSTNAME}/g" /etc/etcd/etcd.config.yml
    sed -i "s/${PUBLIC_IP}/$(hostname -i)/g" /etc/etcd/etcd.config.yml
    fi
    done

    $ ls /etc/kubernetes/manifests
    etcd.yml haproxy.yml keepalived.yml kube-apiserver.yml kube-controller-manager.yml kube-scheduler.yml
    • 若IP与教学设定不同的话,请记得修改YAML文件,keepalived.yml里记得把interface改成宿主机的网卡名。
    • kube-apiserver中的·NodeRestriction·请参考Using Node Authorization

    产生一个用来加密Etcd 的Key:

    1
    2
    $ head -c 32 /dev/urandom | base64
    SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
    • 注意每台master节点需要用一样的Key。

    然后在每台master机器的/etc/kubernetes/目录下,使用上面的key配合下面命令来建立encryption.yml的加密YAML文件:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    $ cat <<EOF > /etc/kubernetes/encryption.yml
    kind: EncryptionConfig
    apiVersion: v1
    resources:
    - resources:
    - secrets
    providers:
    - aescbc:
    keys:
    - name: key1
    secret: SUpbL4juUYyvxj3/gonV5xVEx8j769/99TSAf8YT/sQ=
    - identity: {}
    EOF

    然后在每台master机器/etc/kubernetes/目录下,建立audit-policy.yml的进阶稽核策略YAML文件:

    1
    2
    3
    4
    5
    6
    $ cat <<EOF > /etc/kubernetes/audit-policy.yml
    apiVersion: audit.k8s.io/v1beta1
    kind: Policy
    rules:
    - level: Metadata
    EOF
    • Audit Policy请参考这篇Auditing

    每台master机器下载haproxy.cfg档案来提供给HAProxy容器使用:

    1
    2
    $ mkdir -p /etc/haproxy/
    $ wget "${CORE_URL}/haproxy.cfg" -O /etc/haproxy/haproxy.cfg
    • 若与本教学IP 不同的话,请记得修改设定档。

    每台master机器下载kubelet.service相关文件来管理kubelet:

    1
    2
    3
    $ mkdir -p /etc/systemd/system/kubelet.service.d
    $ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
    $ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
    • 若cluster dns或domain有改变的话,需要修改10-kubelet.conf。

    最后每台master机器建立var 存放资讯,然后启动kubelet 服务:

    1
    2
    $ mkdir -p /var/lib/kubelet /var/log/kubernetes /var/lib/etcd
    $ systemctl enable kubelet.service && systemctl start kubelet.service

    完成后会需要一段时间来下载映像档与启动元件,可以利用该指令来监看:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    $ watch netstat -ntlp
    Active Internet connections (only servers)
    Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
    tcp 0 0 127.0.0.1:10248 0.0.0.0:* LISTEN 10344/kubelet
    tcp 0 0 127.0.0.1:10251 0.0.0.0:* LISTEN 11324/kube-schedule
    tcp 0 0 0.0.0.0:6443 0.0.0.0:* LISTEN 11416/haproxy
    tcp 0 0 127.0.0.1:10252 0.0.0.0:* LISTEN 11235/kube-controll
    tcp 0 0 0.0.0.0:9090 0.0.0.0:* LISTEN 11416/haproxy
    tcp6 0 0 :::2379 :::* LISTEN 10479/etcd
    tcp6 0 0 :::2380 :::* LISTEN 10479/etcd
    tcp6 0 0 :::10255 :::* LISTEN 10344/kubelet
    tcp6 0 0 :::5443 :::* LISTEN 11295/kube-apiserve
    • 此处需要等待时间来拉取镜像,需要耐心等待
    • 若看到以上资讯表示服务正常启动,若发生问题可以用docker指令来查看。
    • 若看到关键的几个管理组件容器退出的话就说明操作错误

    上面会去拉取镜像,需要一段时间,具体好没好可以下面的操作来看状态对不对

    验证集群
    完成后,在任意一台master节点复制admin kubeconfig文件,并通过简单指令验证:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    $ cp /etc/kubernetes/admin.conf ~/.kube/config
    $ kubectl get cs
    NAME STATUS MESSAGE ERROR
    controller-manager Healthy ok
    scheduler Healthy ok
    etcd-2 Healthy {"health": "true"}
    etcd-1 Healthy {"health": "true"}
    etcd-0 Healthy {"health": "true"}

    $ kubectl get node
    NAME STATUS ROLES AGE VERSION
    k8s-m1 NotReady master 52s v1.10.0
    k8s-m2 NotReady master 51s v1.10.0
    k8s-m3 NotReady master 50s v1.10.0

    $ kubectl -n kube-system get po
    NAME READY STATUS RESTARTS AGE
    etcd-k8s-m1 1/1 Running 0 7m
    etcd-k8s-m2 1/1 Running 0 8m
    etcd-k8s-m3 1/1 Running 0 7m
    haproxy-k8s-m1 1/1 Running 0 7m
    haproxy-k8s-m2 1/1 Running 0 8m
    haproxy-k8s-m3 1/1 Running 0 8m
    keepalived-k8s-m1 1/1 Running 0 8m
    keepalived-k8s-m2 1/1 Running 0 7m
    keepalived-k8s-m3 1/1 Running 0 7m
    kube-apiserver-k8s-m1 1/1 Running 0 7m
    kube-apiserver-k8s-m2 1/1 Running 0 6m
    kube-apiserver-k8s-m3 1/1 Running 0 7m
    kube-controller-manager-k8s-m1 1/1 Running 0 8m
    kube-controller-manager-k8s-m2 1/1 Running 0 8m
    kube-controller-manager-k8s-m3 1/1 Running 0 8m
    kube-scheduler-k8s-m1 1/1 Running 0 8m
    kube-scheduler-k8s-m2 1/1 Running 0 8m
    kube-scheduler-k8s-m3 1/1 Running 0 8m

    接着确认服务能够执行logs 等指令:

    1
    2
    $ kubectl -n kube-system logs -f kube-scheduler-k8s-m2
    Error from server (Forbidden): Forbidden (user=kube-apiserver, verb=get, resource=nodes, subresource=proxy) ( pods/log kube-scheduler-k8s-m2)
    • 这边会发现出现403 Forbidden问题,这是因为kube-apiserveruser并没有nodes的资源存取权限,属于正常。

    后面kubectl的命令不需要每个master都执行了,任意一台master执行就行了
    kubectl可以从url读取内容来创建内容里的资源对象,也可以本地文件读取
    后面kubectl命令结尾的yaml文件记得先下载下来改下里面的镜像仓库部分gcr.io/google_containers和k8s.gcr.io部分换成mirrorgooglecontainers,还有里面的apiserver ip啥的
    然后-f后面指定文件路径即可
    上面建议后面kubectl命令部分同理,不在多说废话

    1
    2
    3
    4
    5
    6
    7
    8
    9
    $ kubectl apply -f "${CORE_URL}/apiserver-to-kubelet-rbac.yml.conf"
    clusterrole.rbac.authorization.k8s.io "system:kube-apiserver-to-kubelet" configured
    clusterrolebinding.rbac.authorization.k8s.io "system:kube-apiserver" configured

    # 測試 logs
    $ kubectl -n kube-system logs -f kube-scheduler-k8s-m2
    ...
    I0403 02:30:36.375935 1 server.go:555] Version: v1.10.0
    I0403 02:30:36.378208 1 server.go:574] starting healthz server on 127.0.0.1:10251

    设定master节点允许Taint:

    1
    2
    3
    4
    $ kubectl taint nodes node-role.kubernetes.io/master="":NoSchedule --all
    node "k8s-m1" tainted
    node "k8s-m2" tainted
    node "k8s-m3" tainted

    建立TLS Bootstrapping RBAC 与Secret
    由于本次安装启用了TLS认证,因此每个节点的kubelet都必须使用kube-apiserver的CA的凭证后,才能与kube-apiserver进行沟通,而该过程需要手动针对每台节点单独签署凭证是一件繁琐的事情,且一旦节点增加会延伸出管理不易问题;而TLS bootstrapping目标就是解决该问题,通过让kubelet先使用一个预定低权限使用者连接到kube-apiserver,然后在对kube-apiserver申请凭证签署,当授权Token一致时,Node节点的kubelet凭证将由kube-apiserver动态签署提供。具体作法可以参考TLS BootstrappingAuthenticating with Bootstrap Tokens

    首先在k8s-m1建立一个变数来产生BOOTSTRAP_TOKEN,并建立bootstrap-kubelet.conf的Kubernetes config文件:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    $ cd /etc/kubernetes/pki
    $ export TOKEN_ID=$(openssl rand 3 -hex)
    $ export TOKEN_SECRET=$(openssl rand 8 -hex)
    $ export BOOTSTRAP_TOKEN=${TOKEN_ID}.${TOKEN_SECRET}
    $ export KUBE_APISERVER="https://192.16.35.10:6443"

    # bootstrap set cluster
    $ kubectl config set-cluster kubernetes
    --certificate-authority=ca.pem
    --embed-certs=true
    --server=${KUBE_APISERVER}
    --kubeconfig=../bootstrap-kubelet.conf

    # bootstrap set credentials
    $ kubectl config set-credentials tls-bootstrap-token-user
    --token=${BOOTSTRAP_TOKEN}
    --kubeconfig=../bootstrap-kubelet.conf

    # bootstrap set context
    $ kubectl config set-context tls-bootstrap-token-user@kubernetes
    --cluster=kubernetes
    --user=tls-bootstrap-token-user
    --kubeconfig=../bootstrap-kubelet.conf

    # bootstrap use default context
    $ kubectl config use-context tls-bootstrap-token-user@kubernetes
    --kubeconfig=../bootstrap-kubelet.conf
    • 若想要用手动签署凭证来进行授权的话,可以参考Certificate

    接着在k8s-m1建立TLS bootstrap secret来提供自动签证使用:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    $ cat <<EOF | kubectl create -f -
    apiVersion: v1
    kind: Secret
    metadata:
    name: bootstrap-token-${TOKEN_ID}
    namespace: kube-system
    type: bootstrap.kubernetes.io/token
    stringData:
    token-id: ${TOKEN_ID}
    token-secret: ${TOKEN_SECRET}
    usage-bootstrap-authentication: "true"
    usage-bootstrap-signing: "true"
    auth-extra-groups: system:bootstrappers:default-node-token
    EOF

    secret "bootstrap-token-65a3a9" created

    k8s-m1建立 TLS Bootstrap Autoapprove RBAC:

    1
    2
    3
    4
    $ kubectl apply -f "${CORE_URL}/kubelet-bootstrap-rbac.yml.conf"
    clusterrolebinding.rbac.authorization.k8s.io "kubelet-bootstrap" created
    clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-bootstrap" created
    clusterrolebinding.rbac.authorization.k8s.io "node-autoapprove-certificate-rotation" created

    Kubernetes Nodes
    本部分将说明如何建立与设定Kubernetes Node 角色,Node 是主要执行容器实例(Pod)的工作节点。
    在开始部署前,先在k8-m1将需要用到的文件复制到所有node节点上:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    $ cd /etc/kubernetes/pki
    $ for NODE in k8s-n1 k8s-n2 k8s-n3; do
    echo "--- $NODE ---"
    ssh ${NODE} "mkdir -p /etc/kubernetes/pki/"
    ssh ${NODE} "mkdir -p /etc/etcd/ssl"
    # Etcd
    for FILE in etcd-ca.pem etcd.pem etcd-key.pem; do
    scp /etc/etcd/ssl/${FILE} ${NODE}:/etc/etcd/ssl/${FILE}
    done
    # Kubernetes
    for FILE in pki/ca.pem pki/ca-key.pem bootstrap-kubelet.conf; do
    scp /etc/kubernetes/${FILE} ${NODE}:/etc/kubernetes/${FILE}
    done
    done

    部署与设定
    在每台node节点下载kubelet.service相关文件来管理kubelet:

    1
    2
    3
    4
    $ export CORE_URL="https://kairen.github.io/files/manual-v1.10/node"
    $ mkdir -p /etc/systemd/system/kubelet.service.d
    $ wget "${CORE_URL}/kubelet.service" -O /lib/systemd/system/kubelet.service
    $ wget "${CORE_URL}/10-kubelet.conf" -O /etc/systemd/system/kubelet.service.d/10-kubelet.conf
    • cluster dnsdomain有改变的话,需要修改10-kubelet.conf

    最后每台node节点建立var 存放资讯,然后启动kubelet 服务:

    1
    2
    $ mkdir -p /var/lib/kubelet /var/log/kubernetes
    $ systemctl enable kubelet.service && systemctl start kubelet.service

    验证集群
    完成后,在任意一台master节点并通过简单指令验证:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    $ kubectl get csr
    NAME AGE REQUESTOR CONDITION
    csr-bvz9l 11m system:node:k8s-m1 Approved,Issued
    csr-jwr8k 11m system:node:k8s-m2 Approved,Issued
    csr-q867w 11m system:node:k8s-m3 Approved,Issued
    node-csr-Y-FGvxZWJqI-8RIK_IrpgdsvjGQVGW0E4UJOuaU8ogk 17s system:bootstrap:dca3e1 Approved,Issued
    node-csr-cnX9T1xp1LdxVDc9QW43W0pYkhEigjwgceRshKuI82c 19s system:bootstrap:dca3e1 Approved,Issued
    node-csr-m7SBA9RAGCnsgYWJB-u2HoB2qLSfiQZeAxWFI2WYN7Y 18s system:bootstrap:dca3e1 Approved,Issued

    $ kubectl get nodes
    NAME STATUS ROLES AGE VERSION
    k8s-m1 NotReady master 12m v1.10.0
    k8s-m2 NotReady master 11m v1.10.0
    k8s-m3 NotReady master 11m v1.10.0
    k8s-n1 NotReady node 32s v1.10.0
    k8s-n2 NotReady node 31s v1.10.0
    k8s-n3 NotReady node 29s v1.10.0

    Kubernetes Core Addons部署
    当完成上面所有步骤后,接着需要部署一些插件,其中如Kubernetes DNSKubernetes Proxy等这种Addons是非常重要的。
    Kubernetes Proxy
    Kube-proxy是实现Service的关键插件,kube-proxy会在每台节点上执行,然后监听API Server的Service与Endpoint资源物件的改变,然后来依据变化执行iptables来实现网路的转发。这边我们会需要建议一个DaemonSet来执行,并且建立一些需要的Certificates。

    k8s-m1下载kube-proxy.yml来建立Kubernetes Proxy Addon:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    $ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-proxy.yml.conf"
    serviceaccount "kube-proxy" created
    clusterrolebinding.rbac.authorization.k8s.io "system:kube-proxy" created
    configmap "kube-proxy" created
    daemonset.apps "kube-proxy" created

    $ kubectl -n kube-system get po -o wide -l k8s-app=kube-proxy
    NAME READY STATUS RESTARTS AGE IP NODE
    kube-proxy-8j5w8 1/1 Running 0 29s 192.16.35.16 k8s-n3
    kube-proxy-c4zvt 1/1 Running 0 29s 192.16.35.11 k8s-m1
    kube-proxy-clpl6 1/1 Running 0 29s 192.16.35.12 k8s-m2
    ...

    Kubernetes DNS
    Kube DNS是Kubernetes集群内部Pod之间互相沟通的重要Addon,它允许Pod可以通过Domain Name方式来连接Service,其主要由Kube DNS与Sky DNS组合而成,通过Kube DNS监听Service与Endpoint变化,来提供给Sky DNS资讯,已更新解析位址。

    k8s-m1下载kube-dns.yml来建立Kubernetes Proxy Addon:

    1
    2
    3
    4
    5
    6
    7
    8
    $ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-dns.yml.conf"
    serviceaccount "kube-dns" created
    service "kube-dns" created
    deployment.extensions "kube-dns" created

    $ kubectl -n kube-system get po -l k8s-app=kube-dns
    NAME READY STATUS RESTARTS AGE
    kube-dns-654684d656-zq5t8 0/3 Pending 0 1m

    这边会发现处于Pending状态,是由于Kubernetes Pod Network还未建立完成,因此所有节点会处于NotReady状态,而造成Pod无法被排程分配到指定节点上启动,由于为了解决该问题,下节将说明如何建立Pod Network。

    Calico Network 安装与设定
    Calico 是一款纯3层的资料中心网路方案(不需要Overlay 网路),Calico 好处是它整合了各种云原生平台,且Calico 在每一个节点利用Linux Kernel 实现高效的vRouter 来负责资料的转发,而当资料中心复杂度增加时,可以用BGP route reflector 来达成。

    • 本次不采用手动方式来建立Calico网路,若想了解可以参考Integration Guide

    k8s-m1下载calico.yaml来建立Calico Network:(yaml里的interface网卡名记得改成和宿主机网卡名一致)

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    $ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/network/calico.yml.conf"
    configmap "calico-config" created
    daemonset "calico-node" created
    deployment "calico-kube-controllers" created
    clusterrolebinding "calico-cni-plugin" created
    clusterrole "calico-cni-plugin" created
    serviceaccount "calico-cni-plugin" created
    clusterrolebinding "calico-kube-controllers" created
    clusterrole "calico-kube-controllers" created
    serviceaccount "calico-kube-controllers" created

    $ kubectl -n kube-system get po -l k8s-app=calico-node -o wide
    NAME READY STATUS RESTARTS AGE IP NODE
    calico-node-22mbb 2/2 Running 0 1m 192.16.35.12 k8s-m2
    calico-node-2qwf5 2/2 Running 0 1m 192.16.35.11 k8s-m1
    calico-node-g2sp8 2/2 Running 0 1m 192.16.35.13 k8s-m3
    calico-node-hghp4 2/2 Running 0 1m 192.16.35.14 k8s-n1
    calico-node-qp6gf 2/2 Running 0 1m 192.16.35.15 k8s-n2
    calico-node-zfx4n 2/2 Running 0 1m 192.16.35.16 k8s-n3
    • 这边若节点IP与网卡不同的话,请修改calico.yml文件。

    k8s-m1下载Calico CLI来查看Calico nodes:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    $ wget https://github.com/projectcalico/calicoctl/releases/download/v3.1.0/calicoctl -O /usr/local/bin/calicoctl
    $ chmod u+x /usr/local/bin/calicoctl
    $ cat <<EOF > ~/calico-rc
    export ETCD_ENDPOINTS="https://192.16.35.11:2379,https://192.16.35.12:2379,https://192.16.35.13:2379"
    export ETCD_CA_CERT_FILE="/etc/etcd/ssl/etcd-ca.pem"
    export ETCD_CERT_FILE="/etc/etcd/ssl/etcd.pem"
    export ETCD_KEY_FILE="/etc/etcd/ssl/etcd-key.pem"
    EOF

    $ . ~/calico-rc
    $ calicoctl node status
    Calico process is running.

    IPv4 BGP status
    +--------------+-------------------+-------+----------+-------------+
    | PEER ADDRESS | PEER TYPE | STATE | SINCE | INFO |
    +--------------+-------------------+-------+----------+-------------+
    | 192.16.35.12 | node-to-node mesh | up | 04:42:37 | Established |
    | 192.16.35.13 | node-to-node mesh | up | 04:42:42 | Established |
    | 192.16.35.14 | node-to-node mesh | up | 04:42:37 | Established |
    | 192.16.35.15 | node-to-node mesh | up | 04:42:41 | Established |
    | 192.16.35.16 | node-to-node mesh | up | 04:42:36 | Established |
    +--------------+-------------------+-------+----------+-------------+
    ...

    查看pending 的pod 是否已执行:

    1
    2
    3
    4
    $ kubectl -n kube-system get po -l k8s-app=kube-dns
    kubectl -n kube-system get po -l k8s-app=kube-dns
    NAME READY STATUS RESTARTS AGE
    kube-dns-654684d656-j8xzx 3/3 Running 0 10m

    Gubernets Extra Addons部署
    本节说明如何部署一些官方常用的Addons,如Dashboard、Heapster 等。

    Dashboard
    Dashboard是Kubernetes社区官方开发的仪表板,有了仪表板后管理者就能够通过Web-based方式来管理Kubernetes集群,除了提升管理方便,也让资源视觉化,让人更直觉看见系统资讯的呈现结果。

    k8s-m1通过kubectl来建立kubernetes dashboard即可:

    1
    2
    3
    4
    5
    6
    7
    $ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml
    $ kubectl -n kube-system get po,svc -l k8s-app=kubernetes-dashboard
    NAME READY STATUS RESTARTS AGE
    kubernetes-dashboard-7d5dcdb6d9-j492l 1/1 Running 0 12s

    NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
    kubernetes-dashboard ClusterIP 10.111.22.111 <none> 443/TCP 12s

    这边会额外建立一个名称为open-api Cluster Role Binding,这仅作为方便测试时使用,在一般情况下不要开启,不然就会直接被存取所有API:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    $ cat <<EOF | kubectl create -f -
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
    name: open-api
    namespace: ""
    roleRef:
    apiGroup: rbac.authorization.k8s.io
    kind: ClusterRole
    name: cluster-admin
    subjects:
    - apiGroup: rbac.authorization.k8s.io
    kind: User
    name: system:anonymous
    EOF
    • 注意!管理者可以针对特定使用者来开放API 存取权限,但这边方便使用直接绑在cluster-admin cluster role。

    完成后,就可以通过浏览器存取Dashboard https://192.16.35.10:6443/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
    在 1.7 版本以後的 Dashboard 將不再提供所有權限,因此需要建立一個 service account 來綁定 cluster-admin role:

    1
    2
    3
    4
    $ kubectl -n kube-system create sa dashboard
    $ kubectl create clusterrolebinding dashboard --clusterrole cluster-admin --serviceaccount=kube-system:dashboard
    $ kubectl -n kube-system describe secrets | sed -rn '/sdashboard-token-/,/^token/{/^token/s#S+s+##p}'
    eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtdG9rZW4tdzVocmgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiYWJmMTFjYzMtZjRlYi0xMWU3LTgzYWUtMDgwMDI3NjdkOWI5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOmRhc2hib2FyZCJ9.Xuyq34ci7Mk8bI97o4IldDyKySOOqRXRsxVWIJkPNiVUxKT4wpQZtikNJe2mfUBBD-JvoXTzwqyeSSTsAy2CiKQhekW8QgPLYelkBPBibySjBhJpiCD38J1u7yru4P0Pww2ZQJDjIxY4vqT46ywBklReGVqY3ogtUQg-eXueBmz-o7lJYMjw8L14692OJuhBjzTRSaKW8U2MPluBVnD7M2SOekDff7KpSxgOwXHsLVQoMrVNbspUCvtIiEI1EiXkyCNRGwfnd2my3uzUABIHFhm0_RZSmGwExPbxflr8Fc6bxmuz-_jSdOtUidYkFIzvEWw2vRovPgs3MXTv59RwUw
    • 复制token,然后贴到Kubernetes dashboard。注意这边一般来说要针对不同User开启特定存取权限。

    cmd-markdown-logo

    Heapster
    Heapster是Kubernetes社区维护的容器集群监控与效能分析工具。Heapster会从Kubernetes apiserver取得所有Node资讯,然后再通过这些Node来取得kubelet上的资料,最后再将所有收集到资料送到Heapster的后台储存InfluxDB,最后利用Grafana来抓取InfluxDB的资料源来进行视觉化。

    k8s-m1通过kubectl来建立kubernetes monitor即可:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    $ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/kube-monitor.yml.conf"
    $ kubectl -n kube-system get po,svc
    NAME READY STATUS RESTARTS AGE
    ...
    po/heapster-74fb5c8cdc-62xzc 4/4 Running 0 7m
    po/influxdb-grafana-55bd7df44-nw4nc 2/2 Running 0 7m

    NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
    ...
    svc/heapster ClusterIP 10.100.242.225 <none> 80/TCP 7m
    svc/monitoring-grafana ClusterIP 10.101.106.180 <none> 80/TCP 7m
    svc/monitoring-influxdb ClusterIP 10.109.245.142 <none> 8083/TCP,8086/TCP 7m
    ···

    完成后,就可以通过浏览器存取Grafana Dashboard https://192.16.35.10:6443/api/v1/namespaces/kube-system/services/monitoring-grafana/proxy/

    cmd-markdown-logo

    Ingress
    Ingress是利用Nginx或HAProxy等负载平衡器来暴露集群内服务的元件,Ingress主要通过设定Ingress规格来定义Domain Name映射Kubernetes内部Service,这种方式可以避免掉使用过多的NodePort问题。

    k8s-m1通过kubectl来建立Ingress Controller即可:

    1
    2
    3
    4
    5
    6
    $ kubectl create ns ingress-nginx
    $ kubectl apply -f "https://kairen.github.io/files/manual-v1.10/addon/ingress-controller.yml.conf"
    $ kubectl -n ingress-nginx get po
    NAME READY STATUS RESTARTS AGE
    default-http-backend-5c6d95c48-rzxfb 1/1 Running 0 7m
    nginx-ingress-controller-699cdf846-982n4 1/1 Running 0 7m
    • 这里也可以选择Traefik 的Ingress Controller。

    测试Ingress 功能
    这边先建立一个Nginx HTTP server Deployment 与Service:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    $ kubectl run nginx-dp --image nginx --port 80
    $ kubectl expose deploy nginx-dp --port 80
    $ kubectl get po,svc
    $ cat <<EOF | kubectl create -f -
    apiVersion: extensions/v1beta1
    kind: Ingress
    metadata:
    name: test-nginx-ingress
    annotations:
    ingress.kubernetes.io/rewrite-target: /
    spec:
    rules:
    - host: test.nginx.com
    http:
    paths:
    - path: /
    backend:
    serviceName: nginx-dp
    servicePort: 80
    EOF

    通过curl 来进行测试:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    $ curl 192.16.35.10 -H 'Host: test.nginx.com'
    <!DOCTYPE html>
    <html>
    <head>
    <title>Welcome to nginx!</title>
    ...

    # 測試其他 domain name 是否會回傳 404
    $ curl 192.16.35.10 -H 'Host: test.nginx.com1'
    default backend - 404

    Helm Tiller Server
    Helm是Kubernetes Chart的管理工具,Kubernetes Chart是一套预先组态的Kubernetes资源套件。其中Tiller Server主要负责接收来至Client的指令,并通过kube-apiserver与Kubernetes集群做沟通,根据Chart定义的内容,来产生与管理各种对应API物件的Kubernetes部署文件(又称为Release)。

    首先在k8s-m1安装Helm tool:

    1
    2
    $ wget -qO- https://kubernetes-helm.storage.googleapis.com/helm-v2.8.1-linux-amd64.tar.gz | tar -zx
    $ sudo mv linux-amd64/helm /usr/local/bin/

    另外在所有node机器安裝 socat:

    1
    $ sudo apt-get install -y socat

    接着初始化 Helm(这边会安装 Tiller Server):

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    $ kubectl -n kube-system create sa tiller
    $ kubectl create clusterrolebinding tiller --clusterrole cluster-admin --serviceaccount=kube-system:tiller
    $ helm init --service-account tiller
    ...
    Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.
    Happy Helming!

    $ kubectl -n kube-system get po -l app=helm
    NAME READY STATUS RESTARTS AGE
    tiller-deploy-5f789bd9f7-tzss6 1/1 Running 0 29s

    $ helm version
    Client: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}
    Server: &version.Version{SemVer:"v2.8.1", GitCommit:"6af75a8fd72e2aa18a2b278cfe5c7a1c5feca7f2", GitTreeState:"clean"}

    测试Helm 功能
    这边部署简单Jenkins 来进行功能测试:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    $ helm install --name demo --set Persistence.Enabled=false stable/jenkins
    $ kubectl get po,svc -l app=demo-jenkins
    NAME READY STATUS RESTARTS AGE
    demo-jenkins-7bf4bfcff-q74nt 1/1 Running 0 2m

    NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
    demo-jenkins LoadBalancer 10.103.15.129 <pending> 8080:31161/TCP 2m
    demo-jenkins-agent ClusterIP 10.103.160.126 <none> 50000/TCP 2m

    # 取得 admin 帳號的密碼
    $ printf $(kubectl get secret --namespace default demo-jenkins -o jsonpath="{.data.jenkins-admin-password}" | base64 --decode);echo
    r6y9FMuF2u

    完成后,就可以通过浏览器存取Jenkins Web http://192.16.35.10:31161

    cmd-markdown-logo
    测试完成后,即可删除:

    1
    2
    3
    4
    5
    6
    $ helm ls
    NAME REVISION UPDATED STATUS CHART NAMESPACE
    demo 1 Tue Apr 10 07:29:51 2018 DEPLOYED jenkins-0.14.4 default

    $ helm delete demo --purge
    release "demo" deleted

    更多Helm Apps可以到Kubeapps Hub寻找。
    测试集群
    SSH进入k8s-m1节点,然后关闭该节点:

    1
    $ sudo poweroff

    接着进入到k8s-m2节点,通过kubectl来检查集群是否能够正常执行:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    # 先检查 etcd 状态,可以发现 etcd-0 因為关机而中断
    $ kubectl get cs
    NAME STATUS MESSAGE ERROR
    scheduler Healthy ok
    controller-manager Healthy ok
    etcd-1 Healthy {"health": "true"}
    etcd-2 Healthy {"health": "true"}
    etcd-0 Unhealthy Get https://192.16.35.11:2379/health: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)

    # 测试是否可以建立 Pod
    $ kubectl run nginx --image nginx --restart=Never --port 80
    $ kubectl get po
    NAME READY STATUS RESTARTS AGE
    nginx 1/1 Running 0 22s
  • 相关阅读:
    Restful API
    Vue之指令
    Scrapy框架
    爬虫提高性能:串行、线程进程、异步非阻塞
    MongoDB
    Beautifulsoup模块
    请求库之selenium
    php 正则匹配中文
    Javascript的"预编译"思考
    PHP程序员面试技巧之口试题分享
  • 原文地址:https://www.cnblogs.com/kuku0223/p/9124988.html
Copyright © 2020-2023  润新知