• POJ 3259 Wormholes(最短路,判断有没有负环回路)


    Wormholes
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 24249   Accepted: 8652

    Description

    While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

    As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

    To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

    Input

    Line 1: A single integer, FF farm descriptions follow. 
    Line 1 of each farm: Three space-separated integers respectively: NM, and W 
    Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
    Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

    Output

    Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

    Sample Input

    2
    3 3 1
    1 2 2
    1 3 4
    2 3 1
    3 1 3
    3 2 1
    1 2 3
    2 3 4
    3 1 8

    Sample Output

    NO
    YES

    Hint

    For farm 1, FJ cannot travel back in time. 
    For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

    Source

     
     
     
     
    这题就是判断存不存在负环回路。
    前M条是双向边,后面的W是单向的负边。
     
    为了防止出现不连通,
    增加一个结点作为起点。
    起点到所有点的长度为0
     
    bellman_ford算法:
    /*
     * POJ 3259
     * 判断图中是否存在负环回路。
     * 为了防止图不连通的情况,增加一个点作为起点,这个点和其余的点都相连。
     */
    
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <vector>
    #include <queue>
    using namespace std;
    /*
     * 单源最短路bellman_ford算法,复杂度O(VE)
     * 可以处理负边权图。
     * 可以判断是否存在负环回路。返回true,当且仅当图中不包含从源点可达的负权回路
     * vector<Edge>E;先E.clear()初始化,然后加入所有边
     * 点的编号从1开始(从0开始简单修改就可以了)
     */
    const int INF=0x3f3f3f3f;
    const int MAXN=550;
    int dist[MAXN];
    struct Edge
    {
        int u,v;
        int cost;
        Edge(int _u=0,int _v=0,int _cost=0):u(_u),v(_v),cost(_cost){}
    };
    vector<Edge>E;
    bool bellman_ford(int start,int n)//点的编号从1开始
    {
        for(int i=1;i<=n;i++)dist[i]=INF;
        dist[start]=0;
        for(int i=1;i<n;i++)//最多做n-1次
        {
            bool flag=false;
            for(int j=0;j<E.size();j++)
            {
                int u=E[j].u;
                int v=E[j].v;
                int cost=E[j].cost;
                if(dist[v]>dist[u]+cost)
                {
                    dist[v]=dist[u]+cost;
                    flag=true;
                }
            }
            if(!flag)return true;//没有负环回路
        }
        for(int j=0;j<E.size();j++)
            if(dist[E[j].v]>dist[E[j].u]+E[j].cost)
                return false;//有负环回路
        return true;//没有负环回路
    }
    
    int main()
    {
    //    freopen("in.txt","r",stdin);
    //    freopen("out.txt","w",stdout);
        int T;
        int N,M,W;
        int a,b,c;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d%d",&N,&M,&W);
            E.clear();
            while(M--)
            {
                scanf("%d%d%d",&a,&b,&c);
                E.push_back(Edge(a,b,c));
                E.push_back(Edge(b,a,c));
            }
            while(W--)
            {
                scanf("%d%d%d",&a,&b,&c);
                E.push_back(Edge(a,b,-c));
            }
            for(int i=1;i<=N;i++)
                E.push_back(Edge(N+1,i,0));
            if(!bellman_ford(N+1,N+1))printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }

    SPFA算法:

    //============================================================================
    // Name        : POJ.cpp
    // Author      : 
    // Version     :
    // Copyright   : Your copyright notice
    // Description : Hello World in C++, Ansi-style
    //============================================================================
    
    #include <iostream>
    #include <string.h>
    #include <stdio.h>
    #include <algorithm>
    #include <vector>
    #include <queue>
    using namespace std;
    /*
     * 单源最短路SPFA
     * 时间复杂度 0(kE)
     * 这个是队列实现,有时候改成栈实现会更加快,很容易修改
     * 这个复杂度是不定的
     */
    const int MAXN=1010;
    const int INF=0x3f3f3f3f;
    struct Edge
    {
        int v;
        int cost;
        Edge(int _v=0,int _cost=0):v(_v),cost(_cost){}
    };
    vector<Edge>E[MAXN];
    void addedge(int u,int v,int w)
    {
        E[u].push_back(Edge(v,w));
    }
    bool vis[MAXN];
    int cnt[MAXN];
    int dist[MAXN];
    bool SPFA(int start,int n)
    {
        memset(vis,false,sizeof(vis));
        for(int i=1;i<=n;i++)dist[i]=INF;
        dist[start]=0;
        vis[start]=true;
        queue<int>que;
        while(!que.empty())que.pop();
        que.push(start);
        memset(cnt,0,sizeof(cnt));
        cnt[start]=1;
        while(!que.empty())
        {
            int u=que.front();
            que.pop();
            vis[u]=false;
            for(int i=0;i<E[u].size();i++)
            {
                int v=E[u][i].v;
                if(dist[v]>dist[u]+E[u][i].cost)
                {
                    dist[v]=dist[u]+E[u][i].cost;
                    if(!vis[v])
                    {
                        vis[v]=true;
                        que.push(v);
                        if(++cnt[v]>n)return false;
                        //有负环回路
                    }
                }
            }
        }
        return true;
    }
    int main()
    {
    //    freopen("in.txt","r",stdin);
    //    freopen("out.txt","w",stdout);
        int T;
        int N,M,W;
        int a,b,c;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d%d",&N,&M,&W);
            for(int i=1;i<=N+1;i++)E[i].clear();
            while(M--)
            {
                scanf("%d%d%d",&a,&b,&c);
                addedge(a,b,c);
                addedge(b,a,c);
            }
            while(W--)
            {
                scanf("%d%d%d",&a,&b,&c);
                addedge(a,b,-c);
            }
            for(int i=1;i<=N;i++)
                addedge(N+1,i,0);
            if(!SPFA(N+1,N+1))printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }
     
     
     
     
  • 相关阅读:
    LayaAir IDE中 Psd2UI
    react17.x源码解析(1)——源码目录及react架构
    解决layaBox2.13.0beta版本ts项目无法断点问题
    layaair2cmd的使用
    layabox项目文件及项目配置
    react17.x源码解析(2)——fiber树的构建与更新
    部署解压版mysql
    linux命令之find查找文件
    liunx之拷贝命令cp
    linux 之 pwd 命令
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3140385.html
Copyright © 2020-2023  润新知