• ETL学习整理 PostgreSQL


    ETL分别是Extract”、“ Transform” 、Load”三个单词的首字母缩写也就是“抽取”、“转换”、“装载”,但我们日常往往简称其为数据抽取。

    ETL是BI/DW(商务智能/数据仓库)的核心和灵魂,按照统一的规则集成并提高数据的价值,是负责完成数据从数据源向目标数据仓库转化的过程,是实施数据仓库的重要步骤。

    ETL包含了三方面:

    抽取”:将数据从各种原始的业务系统中读取出来,这是所有工作的前提。

    转换”:按照预先设计好的规则将抽取得数据进行转换,使本来异构的数据格式能统一起来。

    装载”:将转换完的数据按计划增量或全部导入到数据仓库中。

    ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。 ETL是BI项目重要的一个环节。 通常情况下,在BI项目中ETL会花掉整个项目至少1/3的时间,ETL设计的好坏直接关接到BI项目的成败。       

      ETL的设计分三部分:数据抽取、数据的清洗转换、数据的加载。在设计ETL的时候我们也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ODS(Operational Data Store,操作型数据存储)中——这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高ETL的运行效率。ETL三个部分中,花费时间最长的是“T”(Transform,清洗、转换)的部分,一般情况下这部分工作量是整个ETL的2/3。数据的加载一般在数据清洗完了之后直接写入DW(Data Warehousing,数据仓库)中去。

      ETL的实现有多种方法,常用的有三种。一种是借助ETL工具(如Oracle的OWB、SQL Server 2000的DTS、SQL Server2005的SSIS服务、Informatic等)实现,一种是SQL方式实现,另外一种是ETL工具和SQL相结合。前两种方法各有各的优缺点,借助工具可以快速的建立起ETL工程,屏蔽了复杂的编码任务,提高了速度,降低了难度,但是缺少灵活性。SQL的方法优点是灵活,提高ETL运行效率,但是编码复杂,对技术要求比较高。第三种是综合了前面二种的优点,会极大地提高ETL的开发速度和效率。

      一、 数据的抽取(Extract)

      这一部分需要在调研阶段做大量的工作,首先要搞清楚数据是从几个业务系统中来,各个业务系统的数据库服务器运行什么DBMS,是否存在手工数据,手工数据量有多大,是否存在非结构化的数据等等,当收集完这些信息之后才可以进行数据抽取的设计。

      1、对于与存放DW的数据库系统相同的数据源处理方法

      这一类数据源在设计上比较容易。一般情况下,DBMS(SQLServer、Oracle)都会提供数据库链接功能,在DW数据库服务器和原业务系统之间建立直接的链接关系就可以写Select 语句直接访问。

      2、对于与DW数据库系统不同的数据源的处理方法

      对于这一类数据源,一般情况下也可以通过ODBC的方式建立数据库链接——如SQL Server和Oracle之间。如果不能建立数据库链接,可以有两种方式完成,一种是通过工具将源数据导出成.txt或者是.xls文件,然后再将这些源系统文件导入到ODS中。另外一种方法是通过程序接口来完成。

      3、对于文件类型数据源(.txt,.xls),可以培训业务人员利用数据库工具将这些数据导入到指定的数据库,然后从指定的数据库中抽取。或者还可以借助工具实现。

      4、增量更新的问题

      对于数据量大的系统,必须考虑增量抽取。一般情况下,业务系统会记录业务发生的时间,我们可以用来做增量的标志,每次抽取之前首先判断ODS中记录最大的时间,然后根据这个时间去业务系统取大于这个时间所有的记录。利用业务系统的时间戳,一般情况下,业务系统没有或者部分有时间戳。

    二、数据的清洗转换(Cleaning、Transform)

      一般情况下,数据仓库分为ODS、DW两部分。通常的做法是从业务系统到ODS做清洗,将脏数据和不完整数据过滤掉,在从ODS到DW的过程中转换,进行一些业务规则的计算和聚合。

      1、 数据清洗

      数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。

    不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。

      (1)不完整的数据:这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。

      (2)错误的数据:这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库用SQL的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。

      (3)重复的数据:对于这一类数据——特别是维表中会出现这种情况——将重复数据记录的所有字段导出来,让客户确认并整理。

      数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。

      2、 数据转换

      数据转换的任务主要进行不一致的数据转换、数据粒度的转换,以及一些商务规则的计算。

      (1)不一致数据转换:这个过程是一个整合的过程,将不同业务系统的相同类型的数据统一,比如同一个供应商在结算系统的编码是XX0001,而在CRM中编码是YY0001,这样在抽取过来之后统一转换成一个编码。

      (2)数据粒度的转换:业务系统一般存储非常明细的数据,而数据仓库中数据是用来分析的,不需要非常明细的数据。一般情况下,会将业务系统数据按照数据仓库粒度进行聚合。

      (3)商务规则的计算:不同的企业有不同的业务规则、不同的数据指标,这些指标有的时候不是简单的加加减减就能完成,这个时候需要在ETL中将这些数据指标计算好了之后存储在数据仓库中,以供分析使用。

    三、ETL日志、警告发送

      1、 ETL日志

      ETL日志分为三类。

    一类是执行过程日志,这一部分日志是在ETL执行过程中每执行一步的记录,记录每次运行每一步骤的起始时间,影响了多少行数据,流水账形式。

    一类是错误日志,当某个模块出错的时候写错误日志,记录每次出错的时间、出错的模块以及出错的信息等。

    第三类日志是总体日志,只记录ETL开始时间、结束时间是否成功信息。如果使用ETL工具,ETL工具会自动产生一些日志,这一类日志也可以作为ETL日志的一部分。

    记录日志的目的是随时可以知道ETL运行情况,如果出错了,可以知道哪里出错。

      2、 警告发送

      如果ETL出错了,不仅要形成ETL出错日志,而且要向系统管理员发送警告。发送警告的方式多种,一般常用的就是给系统管理员发送邮件,并附上出错的信息,方便管理员排查错误。

      ETL是BI项目的关键部分,也是一个长期的过程,只有不断的发现问题并解决问题,才能使ETL运行效率更高,为BI项目后期开发提供准确与高效的数据。

    后记

         做数据仓库系统,ETL是关键的一环。说大了,ETL是数据整合解决方案,说小了,就是倒数据的工具。回忆一下工作这么长时间以来,处理数据迁移、转换的工作倒还真的不少。但是那些工作基本上是一次性工作或者很小数据量。可是在数据仓库系统中,ETL上升到了一定的理论高度,和原来小打小闹的工具使用不同了。究竟什么不同,从名字上就可以看到,人家已经将倒数据的过程分成3个步骤,E、T、L分别代表抽取、转换和装载。

    其实ETL过程就是数据流动的过程,从不同的数据源流向不同的目标数据。但在数据仓库中。

    二、PostgreSQL可用的ETL

    1.Benetl 是 PostgreSQL 数据库的一个免费的 ETL 工具,同时也支持 MySQL。用于从包括 csv、txt和 excel 文件中抽取数据进行转换并导入到数据库中。

    Benetl a free ETL tool

    2.Kettle PostgreSQL操作的基本介绍

    ETL (extract, transform, load)工具是用于数据库数据迁移清洗处理等操作的工具。

    3.其他工具

    datastage,informatic,OWB,DTS,SISS

  • 相关阅读:
    【剑指Offer】面试招聘题目2:重建二叉树
    简单的安装部署django程序
    Plinga接入
    游戏设计的一些观点
    开方实现
    Mongodb笔记
    动态编程
    数学基础的算法分析
    简单的统计代码程序
    远程在手机上调试android程序
  • 原文地址:https://www.cnblogs.com/kuang17/p/7091907.html
Copyright © 2020-2023  润新知