• spark记录(0)Spark初始


    部分摘自:https://www.cnblogs.com/qingyunzong/p/8886338.html

    1.什么是Spark

    Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行计算框架,Spark拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

    Spark是Scala编写,方便快速编程。

    2.为什么要学Spark

    中间结果输出基于MapReduce的计算引擎通常会将中间结果输出到磁盘上,进行存储和容错。出于任务管道承接的,考虑,当一些查询翻译到MapReduce任务时,往往会产生多个Stage,而这些串联的Stage又依赖于底层文件系统(如HDFS)来存储每一个Stage的输出结果。

    Spark是MapReduce的替代方案,而且兼容HDFS、Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足。

    3.Spark与MapReduce的区别

      都是分布式计算框架,Spark基于内存,MR基于HDFS。Spark处理数据的能力一般是MR的十倍以上,Spark中除了基于内存计算外,还有DAG有向无环图来切分任务的执行先后顺序。

    4.Spark的四大特性

    4.1高效性

    运行速度提高100倍。

    Apache Spark使用最先进的DAG调度程序,查询优化程序和物理执行引擎,实现批量和流式数据的高性能。

    4.2易用性

    Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。

    4.3通用性

    Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。

    4.4兼容性

    Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。

    Mesos:Spark可以运行在Mesos里面(Mesos 类似于yarn的一个资源调度框架)

    standaloneSpark自己可以给自己分配资源(master,worker)

    YARN:Spark可以运行在yarn上面

     Kubernetes:Spark接收 Kubernetes的资源调度

     

    5.Spark的组成

    Spark组成(BDAS):全称伯克利数据分析栈,通过大规模集成算法、机器、人之间展现大数据应用的一个平台。也是处理大数据、云计算、通信的技术解决方案。

    它的主要组件有:

    SparkCore将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。

    SparkSQLSpark Sql 是Spark来操作结构化数据的程序包,可以让我使用SQL语句的方式来查询数据,Spark支持 多种数据源,包含Hive表,parquest以及JSON等内容。

    SparkStreaming 是Spark提供的实时数据进行流式计算的组件。

    MLlib提供常用机器学习算法的实现库。

    GraphX提供一个分布式图计算框架,能高效进行图计算。

    BlinkDB用于在海量数据上进行交互式SQL的近似查询引擎。

    Tachyon以内存为中心高容错的的分布式文件系统。

    6.应用场景

    Yahoo将Spark用在Audience Expansion中的应用,进行点击预测和即席查询等
    淘宝技术团队使用了Spark来解决多次迭代的机器学习算法、高计算复杂度的算法等。应用于内容推荐、社区发现等
    腾讯大数据精准推荐借助Spark快速迭代的优势,实现了在“数据实时采集、算法实时训练、系统实时预测”的全流程实时并行高维算法,最终成功应用于广点通pCTR投放系统上。
    优酷土豆将Spark应用于视频推荐(图计算)、广告业务,主要实现机器学习、图计算等迭代计算。
  • 相关阅读:
    excel文件导入mysql
    linux进程后台运行,且关终端后继续运行
    安装windows后grub修复
    华中科技大学 ubuntu14.04源
    Windows8.1远程桌面时提示凭据不工作的解决方案
    引文分析工具HistCite使用简介
    报账单打印
    iOS开发之--复制粘贴功能
    iOS学习之--字符串的删除替换(字符串的常用处理,删除,替换)
    iOS 裁剪View指定的角裁剪
  • 原文地址:https://www.cnblogs.com/kpsmile/p/10420846.html
Copyright © 2020-2023  润新知