SQLAlchemy
是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果
安装
pip3 install sqlalchemy
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
# 连接MySQL
engine = create_engine('mysql+pymysql://root:123@127.0.0.1:3306/db3?charset=utf8', max_overflow=5)
Base = declarative_base()
"""
create table db3(
id int auto_increment primary key,
name varchar(32) not null default '',
extra varchar(32) not null default ''
)
"""
"""
UserType
id title xx00
1 普通用户
row.xxoo : 多条记录对象
"""
class UserType(Base):
__tablename__ = 'usertype'
id = Column(Integer, autoincrement=True, primary_key=True)
title = Column(String(32), nullable=False, default='')
"""
users
id name extra type_id
1 aa nz 1
usertype = releationship('Usertype')
row.usertype
"""
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, autoincrement=True, primary_key=True)
name = Column(String(32), nullable=False, default='')
extra = Column(String(32), nullable=False, default='')
type_id = Column(Integer, ForeignKey(UserType.id))
# usertype = relationship('UserType',backref='xx00')
__table_args__ = (
UniqueConstraint('id', 'name', name='mix_id_name'),
# 联合唯一索引
Index('ix_name_extra', 'name', 'extra'),
# 组合索引
)
def drop_db():
Base.metadata.drop_all(engine)
# 会将当前执行文件中所有继承自base类的类,生成表
def create_db():
Base.metadata.create_all(engine)
create_db()
Session = sessionmaker(bind=engine)
session = Session()
# 增加一条数据
obj = UserType(title='普通用户')
session.add(obj)
# 添加多条数据
session.add_all([
UserType(title='1'),
UserType(title='2'),
UserType(title='3'),
UserType(title='4'),
UserType(title='5')
])
# 查询
# 查询全部,返回的是一个列表,列表中套对象
res = session.query().all()
for row in res:
print(row.id, row.name)
# 查询一条数据
res = session.query(UserType).first()
print(res)
# where 条件
res = session.query(UserType).filter(UserType.name == '1', UserType.id == 2).all()
for row in res:
print(row.id, row.name)
print(res[0].name, res[0].id)
res = session.query(UserType).filter_by(name='1').all()
print(res)
# 删除
session.query(UserType).filter(UserType.id > 3).delete()
# 修改
session.query(UserType).filter(UserType.id == 3).updata({'name': '2'})
# MySQL 高级查询操作
# 通配符 分组 分页 排序 between and in not in
# between...and...
res = session.query(UserType).filter(UserType.id.between(1, 4)).all()
for row in res:
print(row.id, row.title)
# in 操作
res = session.query(UserType).filter(UserType.id.in_([1, 2, 5])).all()
print(res)
# not in
# select * from Usertype
res = session.query(UserType).filter(~UserType.id.in_([1, 2, 5])).all()
for row in res:
print(row.id, row.title)
# session.query(UserType).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
# res = session.query(UserType.title).filter(~UserType.id.in_([1,3,4])).all()
# for row in res:
# print( row.title)
from sqlalchemy import and_, or_
# 通配符
# res = session.query(Users).all()
from sqlalchemy.sql import func
# rea = session.query(
# Users.type_id,
# func.max(Users.id),
# func.min(Users.id)).group_by(Users.type_id).all()
#
# print(rea)
ret = session.query(
func.max(Users.id),
func.min(Users.id)).group_by(Users.type_id).having(func.min(Users.id) > 2).all()
# left jion
# 1. 查询某一个用户的用户类型
# 第一种方法:
res = session.query(Users, UserType).join(UserType, isouter=True).all()
print(res)
for row in res:
print(row[0].id, row[0].name, row[1].title)
# 二
res = session.query(Users).all()
for row in res:
print(row.id, row.name, row.extra, row.usertype.tiytle)
# 2. 某一个类型下面的用户
### 第一种方法
res = session.query(UserType).all()
for row in res:
print(row.id, row.title, session.query(Users).filter(Users.type_id == row.id)).all()
### 第二种方法
res = session.query(UserType).all()
for row in res:
print(row.id, row.title, row.xx00)