• ElasticSearch的基本用法与集群搭建


    一、简介

    ElasticSearch和Solr都是基于Lucene的搜索引擎,不过ElasticSearch天生支持分布式,而Solr是4.0版本后的SolrCloud才是分布式版本,Solr的分布式支持需要ZooKeeper的支持。

    这里有一个详细的ElasticSearch和Solr的对比:http://solr-vs-elasticsearch.com/

    二、基本用法

    集群(Cluster): ES是一个分布式的搜索引擎,一般由多台物理机组成。这些物理机,通过配置一个相同的cluster name,互相发现,把自己组织成一个集群。

    节点(Node):同一个集群中的一个Elasticearch主机。

    主分片(Primary shard):索引(下文介绍)的一个物理子集。同一个索引在物理上可以切多个分片,分布到不同的节点上。分片的实现是Lucene 中的索引。

    注意:ES中一个索引的分片个数是建立索引时就要指定的,建立后不可再改变。所以开始建一个索引时,就要预计数据规模,将分片的个数分配在一个合理的范围。

    副本分片(Replica shard):每个主分片可以有一个或者多个副本,个数是用户自己配置的。ES会尽量将同一索引的不同分片分布到不同的节点上,提高容错性。对一个索引,只要不是所有shards所在的机器都挂了,就还能用。

    索引(Index):逻辑概念,一个可检索的文档对象的集合。类似与DB中的database概念。同一个集群中可建立多个索引。比如,生产环境常见的一种方法,对每个月产生的数据建索引,以保证单个索引的量级可控。

    类型(Type):索引的下一级概念,大概相当于数据库中的table。同一个索引里可以包含多个 Type。 

    文档(Document):即搜索引擎中的文档概念,也是ES中一个可以被检索的基本单位,相当于数据库中的row,一条记录。

    字段(Field):相当于数据库中的column。ES中,每个文档,其实是以json形式存储的。而一个文档可以被视为多个字段的集合。比如一篇文章,可能包括了主题、摘要、正文、作者、时间等信息,每个信息都是一个字段,最后被整合成一个json串,落地到磁盘。

    映射(Mapping):相当于数据库中的schema,用来约束字段的类型,不过 Elasticsearch 的 mapping 可以不显示地指定、自动根据文档数据创建。

    Elasticsearch集群可以包含多个索引(indices),每一个索引可以包含多个类型(types),每一个类型包含多个文档(documents),然后每个文档包含多个字段(Fields),这种面向文档型的储存,也算是NoSQL的一种吧。

    ES比传统关系型数据库,对一些概念上的理解:

    Relational DB -> Databases -> Tables -> Rows -> Columns
    Elasticsearch -> Indices   -> Types  -> Documents -> Fields

    从创建一个Client到添加、删除、查询等基本用法:

    1、创建Client

    public ElasticSearchService(String ipAddress, int port) {
            client = new TransportClient()
                    .addTransportAddress(new InetSocketTransportAddress(ipAddress,
                            port));
        }

    这里是一个TransportClient。

    ES下两种客户端对比:

    TransportClient:轻量级的Client,使用Netty线程池,Socket连接到ES集群。本身不加入到集群,只作为请求的处理。

    Node Client:客户端节点本身也是ES节点,加入到集群,和其他ElasticSearch节点一样。频繁的开启和关闭这类Node Clients会在集群中产生“噪音”。

    2、创建/删除Index和Type信息

    复制代码
        // 创建索引
        public void createIndex() {
            client.admin().indices().create(new CreateIndexRequest(IndexName))
                    .actionGet();
        }
    
        // 清除所有索引
        public void deleteIndex() {
            IndicesExistsResponse indicesExistsResponse = client.admin().indices()
                    .exists(new IndicesExistsRequest(new String[] { IndexName }))
                    .actionGet();
            if (indicesExistsResponse.isExists()) {
                client.admin().indices().delete(new DeleteIndexRequest(IndexName))
                        .actionGet();
            }
        }
        
        // 删除Index下的某个Type
        public void deleteType(){
            client.prepareDelete().setIndex(IndexName).setType(TypeName).execute().actionGet();
        }
    
        // 定义索引的映射类型
        public void defineIndexTypeMapping() {
            try {
                XContentBuilder mapBuilder = XContentFactory.jsonBuilder();
                mapBuilder.startObject()
                .startObject(TypeName)
                    .startObject("properties")
                        .startObject(IDFieldName).field("type", "long").field("store", "yes").endObject()
                        .startObject(SeqNumFieldName).field("type", "long").field("store", "yes").endObject()
                        .startObject(IMSIFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
                        .startObject(IMEIFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
                        .startObject(DeviceIDFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
                        .startObject(OwnAreaFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
                        .startObject(TeleOperFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
                        .startObject(TimeFieldName).field("type", "date").field("store", "yes").endObject()
                    .endObject()
                .endObject()
                .endObject();
    
                PutMappingRequest putMappingRequest = Requests
                        .putMappingRequest(IndexName).type(TypeName)
                        .source(mapBuilder);
                client.admin().indices().putMapping(putMappingRequest).actionGet();
            } catch (IOException e) {
                log.error(e.toString());
            }
        }
    复制代码

    这里自定义了某个Type的索引映射(Mapping),默认ES会自动处理数据类型的映射:针对整型映射为long,浮点数为double,字符串映射为string,时间为date,true或false为boolean。

    注意:针对字符串,ES默认会做“analyzed”处理,即先做分词、去掉stop words等处理再index。如果你需要把一个字符串做为整体被索引到,需要把这个字段这样设置:field("index", "not_analyzed")。

    详情参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/mapping-intro.html

    3、索引数据

    复制代码
        // 批量索引数据
        public void indexHotSpotDataList(List<Hotspotdata> dataList) {
            if (dataList != null) {
                int size = dataList.size();
                if (size > 0) {
                    BulkRequestBuilder bulkRequest = client.prepareBulk();
                    for (int i = 0; i < size; ++i) {
                        Hotspotdata data = dataList.get(i);
                        String jsonSource = getIndexDataFromHotspotData(data);
                        if (jsonSource != null) {
                            bulkRequest.add(client
                                    .prepareIndex(IndexName, TypeName,
                                            data.getId().toString())
                                    .setRefresh(true).setSource(jsonSource));
                        }
                    }
    
                    BulkResponse bulkResponse = bulkRequest.execute().actionGet();
                    if (bulkResponse.hasFailures()) {
                        Iterator<BulkItemResponse> iter = bulkResponse.iterator();
                        while (iter.hasNext()) {
                            BulkItemResponse itemResponse = iter.next();
                            if (itemResponse.isFailed()) {
                                log.error(itemResponse.getFailureMessage());
                            }
                        }
                    }
                }
            }
        }
    
        // 索引数据
        public boolean indexHotspotData(Hotspotdata data) {
            String jsonSource = getIndexDataFromHotspotData(data);
            if (jsonSource != null) {
                IndexRequestBuilder requestBuilder = client.prepareIndex(IndexName,
                        TypeName).setRefresh(true);
                requestBuilder.setSource(jsonSource)
                        .execute().actionGet();
                return true;
            }
    
            return false;
        }
    
        // 得到索引字符串
        public String getIndexDataFromHotspotData(Hotspotdata data) {
            String jsonString = null;
            if (data != null) {
                try {
                    XContentBuilder jsonBuilder = XContentFactory.jsonBuilder();
                    jsonBuilder.startObject().field(IDFieldName, data.getId())
                            .field(SeqNumFieldName, data.getSeqNum())
                            .field(IMSIFieldName, data.getImsi())
                            .field(IMEIFieldName, data.getImei())
                            .field(DeviceIDFieldName, data.getDeviceID())
                            .field(OwnAreaFieldName, data.getOwnArea())
                            .field(TeleOperFieldName, data.getTeleOper())
                            .field(TimeFieldName, data.getCollectTime())
                            .endObject();
                    jsonString = jsonBuilder.string();
                } catch (IOException e) {
                    log.equals(e);
                }
            }
    
            return jsonString;
        }
    复制代码

    ES支持批量和单个数据索引。

    4、查询获取数据

    复制代码
        // 获取少量数据100个
        private List<Integer> getSearchData(QueryBuilder queryBuilder) {
            List<Integer> ids = new ArrayList<>();
            SearchResponse searchResponse = client.prepareSearch(IndexName)
                    .setTypes(TypeName).setQuery(queryBuilder).setSize(100)
                    .execute().actionGet();
            SearchHits searchHits = searchResponse.getHits();
            for (SearchHit searchHit : searchHits) {
                Integer id = (Integer) searchHit.getSource().get("id");
                ids.add(id);
            }
            return ids;
        }
    
        // 获取大量数据
        private List<Integer> getSearchDataByScrolls(QueryBuilder queryBuilder) {
            List<Integer> ids = new ArrayList<>();
            // 一次获取100000数据
            SearchResponse scrollResp = client.prepareSearch(IndexName)
                    .setSearchType(SearchType.SCAN).setScroll(new TimeValue(60000))
                    .setQuery(queryBuilder).setSize(100000).execute().actionGet();
            while (true) {
                for (SearchHit searchHit : scrollResp.getHits().getHits()) {
                    Integer id = (Integer) searchHit.getSource().get(IDFieldName);
                    ids.add(id);
                }
                scrollResp = client.prepareSearchScroll(scrollResp.getScrollId())
                        .setScroll(new TimeValue(600000)).execute().actionGet();
                if (scrollResp.getHits().getHits().length == 0) {
                    break;
                }
            }
    
            return ids;
        }
    复制代码

    这里的QueryBuilder是一个查询条件,ES支持分页查询获取数据,也可以一次性获取大量数据,需要使用Scroll Search。

    5、聚合(Aggregation Facet)查询 

    复制代码
        // 得到某段时间内设备列表上每个设备的数据分布情况<设备ID,数量>
        public Map<String, String> getDeviceDistributedInfo(String startTime,
                String endTime, List<String> deviceList) {
    
            Map<String, String> resultsMap = new HashMap<>();
    
            QueryBuilder deviceQueryBuilder = getDeviceQueryBuilder(deviceList);
            QueryBuilder rangeBuilder = getDateRangeQueryBuilder(startTime, endTime);
            QueryBuilder queryBuilder = QueryBuilders.boolQuery()
                    .must(deviceQueryBuilder).must(rangeBuilder);
    
            TermsBuilder termsBuilder = AggregationBuilders.terms("DeviceIDAgg").size(Integer.MAX_VALUE)
                    .field(DeviceIDFieldName);
            SearchResponse searchResponse = client.prepareSearch(IndexName)
                    .setQuery(queryBuilder).addAggregation(termsBuilder)
                    .execute().actionGet();
            Terms terms = searchResponse.getAggregations().get("DeviceIDAgg");
            if (terms != null) {
                for (Terms.Bucket entry : terms.getBuckets()) {
                    resultsMap.put(entry.getKey(),
                            String.valueOf(entry.getDocCount()));
                }
            }
            return resultsMap;
        }
    复制代码

    Aggregation查询可以查询类似统计分析这样的功能:如某个月的数据分布情况,某类数据的最大、最小、总和、平均值等。

    详情参考:https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/java-aggs.html

    三、集群配置

    配置文件elasticsearch.yml

    集群名和节点名:

    #cluster.name: elasticsearch

    #node.name: "Franz Kafka"

    是否参与master选举和是否存储数据

    #node.master: true

    #node.data: true

    分片数和副本数

    #index.number_of_shards: 5
    #index.number_of_replicas: 1

    master选举最少的节点数,这个一定要设置为整个集群节点个数的一半加1,即N/2+1

    #discovery.zen.minimum_master_nodes: 1

    discovery ping的超时时间,拥塞网络,网络状态不佳的情况下设置高一点

    #discovery.zen.ping.timeout: 3s

    注意,分布式系统整个集群节点个数N要为奇数个!!

    如何避免ElasticSearch发生脑裂(brain split):http://blog.trifork.com/2013/10/24/how-to-avoid-the-split-brain-problem-in-elasticsearch/

    即使集群节点个数为奇数,minimum_master_nodes为整个集群节点个数一半加1,也难以避免脑裂的发生,详情看讨论:https://github.com/elastic/elasticsearch/issues/2488

    四、Elasticsearch插件

    1、elasticsearch-head是一个elasticsearch的集群管理工具:./elasticsearch-1.7.1/bin/plugin -install mobz/elasticsearch-head

    2、elasticsearch-sql:使用SQL语法查询elasticsearch:./bin/plugin -u https://github.com/NLPchina/elasticsearch-sql/releases/download/1.3.5/elasticsearch-sql-1.3.5.zip --install sql

    github地址:https://github.com/NLPchina/elasticsearch-sql

    3、elasticsearch-bigdesk是elasticsearch的一个集群监控工具,可以通过它来查看ES集群的各种状态。

    安装:./bin/plugin -install lukas-vlcek/bigdesk

    访问:http://192.103.101.203:9200/_plugin/bigdesk/

    4、elasticsearch-servicewrapper插件是ElasticSearch的服务化插件,

    在https://github.com/elasticsearch/elasticsearch-servicewrapper下载该插件后,解压缩,将service目录拷贝到elasticsearch目录的bin目录下。

    而后,可以通过执行以下语句安装、启动、停止ElasticSearch:

    sh elasticsearch install

    sh elasticsearch start

    sh elasticsearch stop

    参考:

    https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.html

    https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

    http://stackoverflow.com/questions/10213009/solr-vs-elasticsearch

  • 相关阅读:
    HDU4857 逃生 拓扑排序
    HDU1285 确定名次 拓扑排序
    【noip模拟赛4】找啊找啊找BF 拓扑排序
    拓扑排序基础
    【noip模拟赛5】任务分配 降维dp
    【noip模拟赛6】收入计划 最大值的最小值 二分答案
    【noip模拟赛5】水流
    标记预期失败
    跳过:
    pytest配置文件:
  • 原文地址:https://www.cnblogs.com/kms1989/p/7245501.html
Copyright © 2020-2023  润新知