这个题意搞了半天才搞明白 就是如果定义一个d-summit,即从该点到另一个更高的点,经过的路径必定是比当前点低至少d高度的,如果该点是最高点,没有比他更高的,就直接视为顶点 其实就是个BFS染色,先按降序排序,然后每个点对其可到达的点染色,h-d的点为边界,走到这里就不用往下染了 然后其他店染色的时候若产生冲突,则非d—summit,否则该点为顶点 今天还有COJ上一个BFS染色的题目,一直TLE。。。还没弄出来
#include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <algorithm> using namespace std; int mat[510][510]; int n,m,d,cnt; struct node{ int x,y,h; bool operator <(const node& rhs)const{ return h>rhs.h; } }P[510*500]; int dir[][2]={{0,1},{0,-1},{1,0},{-1,0}}; int vis[510][510]; int ans; inline void bfs(int x) { node a=P[x]; int flag=1; int tot=1; if (vis[a.x][a.y]!=-1){ flag=0; return; } else vis[a.x][a.y]=a.h; queue<node> q; q.push(a); int sh=a.h; int lh=a.h-d; while (!q.empty()) { node u=q.front(); q.pop(); for (int i=0;i<4;i++){ node np; np.x=u.x+dir[i][0]; np.y=u.y+dir[i][1]; np.h=mat[np.x][np.y]; if (np.x>=n || np.y>=m || np.x<0 ||np.y<0) continue; if (np.h<=lh) continue; if (vis[np.x][np.y]!=-1){ if (vis[np.x][np.y]!=sh) flag=0; continue; } vis[np.x][np.y]=sh; if (np.h==sh) tot++; q.push(np); } } if (flag==1) ans+=tot; } int main() { int t; scanf("%d",&t); while (t--) { cnt=0; scanf("%d%d%d",&n,&m,&d); for (int i=0;i<n;i++) { for (int j=0;j<m;j++){ scanf("%d",&mat[i][j]); P[cnt].x=i; P[cnt].y=j; P[cnt++].h=mat[i][j]; } } sort(P,P+n*m); memset(vis,-1,sizeof vis); ans=0; for (int i=0;i<n*m;i++) { bfs(i); } printf("%d ",ans); } return 0; }