• Codeforces Round #633 (Div. 2)


    Codeforces Round #633(Div.2)

    (A.Filling Diamonds)
    答案就是构成的六边形数量+1

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    using LL = int_fast64_t;
    void solve(){
        LL n; cin >> n;
        cout << n << endl;
    }
    int main(){
        ____();
        int T;
        for(cin >> T; T; T--) solve();
        return 0;
    }
    

    (B.Sorted Adjacent Differences)
    考虑排完序之后从中间开始一左一右选择即可

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 2e5+7;
    int n,A[MAXN];
    void solve(){
        cin >> n;
        for(int i = 1; i <= n; i++) cin >> A[i];
        sort(A+1,A+1+n);
        int mid = n / 2 + 1;
        int lp = mid - 1, rp = mid + 1;
        cout << A[mid] << ' ';
        while(lp!=0 or rp!=n+1){
            if(lp!=0) cout << A[lp--] << ' ';
            if(rp!=n+1) cout << A[rp++] << ' ';
        }
        cout << endl;
    }
    int main(){
        ____();
        int T;
        for(cin >> T; T; T--) solve();    
        return 0;
    }
    

    (C.Powered Addition)
    考虑对于每个数,需要加的最小值为其之前的最大值和这个值的差值,然后找到这个差值的最大值找到其二进制最高位即可

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e5+7;
    using LL = int_fast64_t;
    int n;
    LL A[MAXN];
    void solve(){
        cin >> n;
        for(int i = 1; i <= n; i++) cin >> A[i];
        LL minn = 1e10;
        LL delta = 0;
        for(int i = n; i >= 1; i--){
            delta = max(delta,A[i]-minn);
            minn = min(A[i],minn);
        }
        if(!delta) cout << 0 << endl;
        else{
            while(delta!=(delta&-delta)) delta -= (delta&-delta);
            cout << __builtin_ctz(delta)+1 << endl;
        }
    }
    int main(){
        ____();
        int T;
        for(cin >> T; T; T--) solve();
        return 0;
    }
    

    (D.Edge Weight Assignment)
    考虑最少不同的数,各个叶子节点到根的距离的奇偶性如果一样,那么所有边权都可以相等,否则的话用(1,2,3)三个数来赋值边权必然可以满足条件
    对于最多的不同的数,考虑树形(DP)(dp[i])表示以(i)为根的子树所用的最多的不同边权,以非叶节点为根进行(dfs),考虑转移,对于(u)点的所有儿子,如果存在叶子节点的话,(dp[u]+=1),叶子节点连上来的边权必然相等,对于儿子中的非叶子节点(v),转移为(dp[u] += dp[v] + 1),可以假设叶子节点走到儿子节点的权值异或和为(x),那么不同儿子子树中的叶子节点走到该儿子节点的异或和可以不同,所以从儿子连到当前点的边权也可以不一样。

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e5+7;
    using LL = int_fast64_t;
    int n,depth[MAXN],f[MAXN];
    vector<int> G[MAXN];
    bool odd = false, even = false;
    void dfs(int u, int par){
        depth[u] = depth[par] + 1;
        bool zero = false;
        if(par and G[u].size()==1){
            if(depth[u]&1) odd = true;
            else even = true;
        }
        for(int v : G[u]){
            if(v==par) continue;
            dfs(v,u);
            if(f[v]==0) zero = true;
            else f[u] += f[v] + 1;
        }
        if(zero) f[u]++;
    }
    int main(){
        ____();
        cin >> n;
        for(int i = 1; i < n; i++){
            int u, v;
            cin >> u >> v;
            G[u].emplace_back(v);
            G[v].emplace_back(u);
        }
        int root = 1;
        for(int i = 1; i <= n; i++) if(G[i].size()>1) root = i;
        dfs(root,0);
        cout << ((odd and even)?3:1) << ' ' << f[root] << endl;
        return 0;
    }
    

    (C.Perfect Triples)
    找规律题
    对着表找了半天规律没写出来,我菜死了
    用四进制表示每一位,可以打表出来
    001 002 003
    //1行

    010 020 030
    011 022 033
    012 023 031
    013 021 032
    //1<<2行

    100 200 300
    101 202 303
    102 203 301
    103 201 302
    110 220 330
    111 222 333
    112 223 331
    113 221 332
    ... ... ...
    //1<<4行

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    using LL = int_fast64_t;
    void solve(){
        LL n; cin >> n;
        LL m = (n - 1) / 3 + 1, md = n % 3 ? n % 3 : 3, ret = 0, bit = 1, num = 0, a[4];
        if(md==1) a[0] = 3, a[1] = 0, a[2] = 1, a[3] = 2;
        else if(md==2) a[0] = 1, a[1] = 0, a[2] = 2, a[3] = 3;
        else a[0] = 2, a[1] = 0, a[2] = 3, a[3] = 1;
        while(true){
            if(bit>=m){
                ret += (md<<num);
                break;
            }
            m -= bit;
            ret += (a[((m-1) / bit + 1) % 4]<<num);
            bit <<= 2, num += 2;
        }
        cout << ret << endl;
    }
    int main(){
        ____();
        int T;
        for(cin >> T; T; T--) solve();
        return 0;
    }
    
  • 相关阅读:
    canvas 文本坐标(0,0)显示问题
    canvas 图片跨域处理
    canvas 文字换行
    什么是柯理化函数?
    记录一下学习webpack原理的过程
    pika和kombu实现rpc代码
    pika和rabbitMQ实现rpc代码
    docker部署rabbitMQ
    rabbitMQ和pika模块
    ubuntu搭建关于amd64或arm64,armhf架构的本地apt源
  • 原文地址:https://www.cnblogs.com/kikokiko/p/12689018.html
Copyright © 2020-2023  润新知