Discription
Create a code to determine the amount of integers, lying in the set [X; Y] and being a sum of exactly K different integer degrees of B.
Example. Let X=15, Y=20, K=2, B=2. By this example 3 numbers are the sum of exactly two integer degrees of number 2:
17 = 2 4+2 0,
18 = 2 4+2 1,
20 = 2 4+2 2.
18 = 2 4+2 1,
20 = 2 4+2 2.
Input
The first line of input contains integers X and Y, separated with a space (1 ≤ X ≤ Y ≤ 2 31−1). The next two lines contain integersK and B (1 ≤ K ≤ 20; 2 ≤ B ≤ 10).
Output
Output should contain a single integer — the amount of integers, lying between X and Y, being a sum of exactly K different integer degrees of B.
Example
input | output |
---|---|
15 20 2 2 |
3 |
Solution
中文大意:给定你一个区间[X,Y],问区间内可以表示为k个b的次方和的数有多少
可以套用进制模型,k个b的次方的和,转化为b进制后即含有k个1的b进制数(当然,其余为0,因为正好是幂的和,所以只可能包含了0或1)
先考虑简单的二进制情况,按照套路,我们可以对数的个数预处理一下
设f[i][j]表示i长度的二进制数正好含有j个1的个数
f[i][j]=f[i-1][j-1]+f[i-1][j]
处理b进制中大于1的情况:把求出的b进制串从高到低枚举,第一个大于1的位视为1,之后也全部视为1
之后把b进制视为2进制求解即可(满足区间减法,相减一下就行,当然因为算的时候都没有考虑这个限制数本身,所以用Ans(Y+1)-Ans(x)才能求出正解)
#include<stdio.h> int f[42][42],n,m,_k,_b,len,zt[42]; void bin_P() { for(int i=0; i<=32; i++) { f[i][0]=1,f[i][1]=i; for(int j=2; j<=i; j++) f[i][j]=f[i-1][j-1]+f[i-1][j]; } } int getans(int x) { for(len=0; x; x/=_b) zt[++len]=x%_b; int res=0,q=_k; for(int i=len; i; i--) if(zt[i]) { if(zt[i]>1) return res+f[i-1][q-1]+f[i-1][q]; else res+=f[i-1][q],q--; if(q<0)return res; } return res; } int main() { bin_P(); scanf("%d%d%d%d",&n,&m,&_k,&_b); printf("%d ",getans(m+1)-getans(n)); return 0; }