Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
3
-1 0
1 0
0 0
-1 0
1 0
0 0
Sample Output
1 2
Solution
#include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> #define MAXN 50010 #define Eps 1e-18 using namespace std; struct Liyn{ int k, b, pos; void Push(int i) {scanf("%d%d", &k, &b); pos = i;} bool operator == (const Liyn &a)const {return k == a.k;} bool operator < (const Liyn &a)const {return k < a.k || (k == a.k && b > a.b);} double Cmp(const Liyn &a) {return double(a.b - b) / double(k - a.k);} }L[MAXN], _pb[MAXN]; int n, top, ans[MAXN]; int main(){ scanf("%d", &n); for(int i = 0; i < n; i++) L[i].Push(i); sort(L, L + n); n = unique(L, L + n) - L; for(int i = 0; i < n; i++){ while(top > 1 && _pb[top - 1].Cmp(_pb[top - 2]) > L[i].Cmp(_pb[top - 1]) - Eps)top--; _pb[top++] = L[i]; } for(int i = 0; i < top; i++) ans[i] = _pb[i].pos; sort(ans, ans + top); for(int i = 0; i < top; i++) printf("%d ", ans[i] + 1); return 0; }