【题目背景】
James 是A市一家物流处的boss,他手下有N个员工,他向顾客们承诺,公司的运营效率是A市最高的。有一天,他接到了N张订单。为了信守承诺,提高运营效率,他找到你,希望你帮他找出一个合理方案,使员工办事速度之和最小(效率最高)。
【输入】
第一行,一个正整数N。
下面是一个N*N的方阵,第i行第j列表示第i个员工运输第j种订单的速度。
【输出】
一个整数,即最小速度总和
【样例输入】
11
27 73 61 86 92 53 36 82 71 14 85
25 35 91 10 59 74 21 96 18 15 32
58 27 31 15 9 95 4 6 89 70 34
58 65 9 43 15 62 67 21 56 4 32
3 93 87 13 49 89 89 45 87 86 43
34 81 42 61 9 69 37 99 63 52 100
57 13 4 45 43 80 39 27 40 38 69
92 64 10 42 85 47 80 74 22 97 74
5 53 81 71 99 24 89 85 16 9 66
14 40 68 13 99 6 44 30 46 96 63
80 99 58 52 47 65 12 43 85 9 4
【样例输出】
110
【数据范围】
对于100%的数据,有N<=11
【题解】
看到数据范围了吧。。。果断上搜索。
注意
可行性剪枝:当所有员工都搜完后,不可再搜,剪枝。
最优性剪枝:若当前累计速度和已经超过历史最小值,剪枝。
#include<cstdio> #include<iostream> #define INF 0x3f3f3f3f using namespace std; bool b[20]; int n,ans=INF,g[20][20]; void dfs(int k,int sum) { if(sum>ans)return; if(k>n){ ans=min(ans,sum); return; } for(int i=1;i<=n;i++) if(!b[i]){ b[i]=1; dfs(k+1,sum+g[k][i]); b[i]=0; } } int main() { scanf("%d",&n); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&g[i][j]); dfs(1,0); printf("%d ",ans); return 0; }