扩展库https://blog.csdn.net/Taily_Duan/article/details/52130135
opencv3.3+扩展库
/************************************************************************/ /* Description: 手势检测 先滤波去噪 -->转换到HSV空间 -->根据皮肤在HSV空间的分布做出阈值判断,这里用到了inRange函数, 然后进行一下形态学的操作,去除噪声干扰,是手的边界更加清晰平滑 -->得到的2值图像后用findContours找出手的轮廓,去除伪轮廓后,再用convexHull函数得到凸包络 Author: Yang Xian History: */ /************************************************************************/ #include <iostream> // for standard I/O #include <string> // for strings #include <iomanip> // for controlling float print precision #include <sstream> // string to number conversion #include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur #include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar) #include <opencv2/highgui/highgui.hpp> // OpenCV window I/O using namespace cv; using namespace std; int main(int argc, char *argv[]) { const std::string sourceReference = "test3.avi"; int delay = 1; char c; int frameNum = -1; // Frame counter //VideoCapture captRefrnc(sourceReference); VideoCapture captRefrnc(0); if (!captRefrnc.isOpened()) { // cout << "Could not open reference " << sourceReference << endl; return -1; } Size refS = Size((int)captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH), (int)captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)); bool bHandFlag = false; const char* WIN_SRC = "Source"; const char* WIN_RESULT = "Result"; // Windows namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE); namedWindow(WIN_RESULT, CV_WINDOW_AUTOSIZE); Mat frame; // 输入视频帧序列 Mat frameHSV; // hsv空间 Mat mask(frame.rows, frame.cols, CV_8UC1); // 2值掩膜 Mat dst(frame); // 输出图像 // Mat frameSplit[4]; vector< vector<Point> > contours; // 轮廓 vector< vector<Point> > filterContours; // 筛选后的轮廓 vector< Vec4i > hierarchy; // 轮廓的结构信息 vector< Point > hull; // 凸包络的点集 while (true) //Show the image captured in the window and repeat { captRefrnc >> frame; if (frame.empty()) { cout << " < < < Game over! > > > "; break; } imshow(WIN_SRC, frame); // Begin // 中值滤波,去除椒盐噪声 medianBlur(frame, frame, 5); // GaussianBlur( frame, frameHSV, Size(9, 9), 2, 2 ); // imshow("blur2", frameHSV); // pyrMeanShiftFiltering(frame, frameHSV, 10, 10); // imshow(WIN_BLUR, frameHSV); // 转换到HSV颜色空间,更容易处理 cvtColor(frame, frameHSV, CV_BGR2HSV); // split(frameHSV, frameSplit); // imshow(WIN_H, frameSplit[0]); // imshow(WIN_S, frameSplit[1]); // imshow(WIN_V, frameSplit[2]); Mat dstTemp1(frame.rows, frame.cols, CV_8UC1); Mat dstTemp2(frame.rows, frame.cols, CV_8UC1); // 对HSV空间进行量化,得到2值图像,亮的部分为手的形状 inRange(frameHSV, Scalar(0, 30, 30), Scalar(40, 170, 256), dstTemp1); inRange(frameHSV, Scalar(156, 30, 30), Scalar(180, 170, 256), dstTemp2); bitwise_or(dstTemp1, dstTemp2, mask); // inRange(frameHSV, Scalar(0,30,30), Scalar(180,170,256), dst); // 形态学操作,去除噪声,并使手的边界更加清晰 Mat element = getStructuringElement(MORPH_RECT, Size(3, 3)); erode(mask, mask, element); morphologyEx(mask, mask, MORPH_OPEN, element); dilate(mask, mask, element); morphologyEx(mask, mask, MORPH_CLOSE, element); frame.copyTo(dst, mask); contours.clear(); hierarchy.clear(); filterContours.clear(); // 得到手的轮廓 findContours(mask, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); // 去除伪轮廓 for (size_t i = 0; i < contours.size(); i++) { // approxPolyDP(Mat(contours[i]), Mat(approxContours[i]), arcLength(Mat(contours[i]), true)*0.02, true); if (fabs(contourArea(Mat(contours[i]))) > 30000) //判断手进入区域的阈值 { filterContours.push_back(contours[i]); } } // 画轮廓 drawContours(dst, filterContours, -1, Scalar(0, 0, 255), 3/*, 8, hierarchy*/); // 得到轮廓的凸包络 for (size_t j = 0; j<filterContours.size(); j++) { convexHull(Mat(filterContours[j]), hull, true); int hullcount = (int)hull.size(); for (int i = 0; i<hullcount - 1; i++) { line(dst, hull[i + 1], hull[i], Scalar(255, 0, 0), 2, CV_AA); } line(dst, hull[hullcount - 1], hull[0], Scalar(255, 0, 0), 2, CV_AA); } imshow(WIN_RESULT, dst); dst.release(); // End c = cvWaitKey(delay); if (c == 27) break; } }