题意:
有n个家具要搬运,两辆搬运车的容量分别是c1, c2,搬运的过程要求两辆搬运车一起来回。问最少需要多少趟能把家具搬完。
思路:
1. 因为n的范围是 n <= 10, 所以可以把家具压缩成状态 s
2. 判断状态 s 所表达的家具是否能有两辆车一次搬运完成,如果能则把状态 s 在 state[] 数组记录下来为 state[] = s
3. 对 state[] 状态数组再进行一次背包,状态的价值为 1,求最少需要多少趟能完成搬运 :dp[s|state[i]] = min(dp[s|state[i]], dp[s] + 1);
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
int w[20];
int n, C1, C2;
int dp[1100], state[1100];
bool pack[1100];
bool judge(int s)
{
int sum = 0;
memset(pack, false, sizeof(pack));
pack[0] = true;
for (int i = 0; i < n; ++i)
if (s & (1 << i))
{
sum += w[i];
for (int v = C1; v >= w[i]; --v)
if (pack[v-w[i]])
pack[v] = true;
}
for (int v = 0; v <= sum; ++v)
if (pack[v] && sum - v <= C2)
return true;
return false;
}
int main()
{
int cases;
int cnt = 0;
scanf("%d", &cases);
while (cases--)
{
scanf("%d %d %d", &n, &C1, &C2);
for (int i = 0; i < n; ++i)
scanf("%d", &w[i]);
int m = 0;
const int inf = (1 << n) - 1;
memset(dp, 0x3f, sizeof(dp));
memset(state, 0, sizeof(state));
for (int s = 0; s <= inf; ++s)
if (judge(s))
state[m++] = s;
dp[0] = 0;
for (int i = 0; i < m; ++i)
for (int s = inf - state[i]; s >= 0; --s)
if (!(s & state[i]))
dp[s|state[i]] = min(dp[s|state[i]], dp[s] + 1);
printf("Scenario #%d:\n%d\n\n", ++cnt, dp[inf]);
}
return 0;
}