• 基于prometheus打造分布式监控系统


    https://www.manongdao.com/article-2418812.html

    规划使用版本

    产品名称版本url地址
    prometheus 2.22.1 https://github.com/prometheus/prometheus/releases/tag/v2.22.1
    alertmanager v0.21.0 https://github.com/prometheus/alertmanager/releases/tag/v0.21.0
    consul 1.8.5 docker.io/consul
    consulR latest https://github.com/qist/registy-consul-service/releases
    victoriametrics v1.50.2 https://github.com/VictoriaMetrics/VictoriaMetrics/releases
    kube-prometheus v0.43.2 https://github.com/prometheus-operator/kube-prometheus
    kube-prometheus 修改版本 https://github.com/qist/k8s/tree/master/k8s-yaml/kube-prometheus
    grafana v7.3.2 docker.io/grafana/grafana

    部署环境

    部署环境部署IP部署方式
    阿里云账号1 10.8.23.80 二进制部署
    阿里云账号2 172.16.4.141 二进制部署
    华为云 10.9.12.133 二进制部署
    阿里云ack kube-prometheus K8S部署
    办公idc kube-prometheus K8S部署
    监控汇总 192.168.2.220 二进制部署
    grafana   K8S 方式部署

    网络互通

    1、阿里云1,2使用阿里云云企网互通
    2、阿里云1与华为云,办公IDC 使用ipsec*** 互通 openswan 安装
    3、阿里云1自定义路由然后发布 这样云企网就能访问,华为云请关闭网卡安全检查安装openswan 服务器关闭 然后配置路由

    部署阿里云1,2,华为云 监控系统(二进制模式)

    ##### 二进制部署目录 /apps/ 业务名目录
    #####下载
    cd /apps
     wget https://github.com/prometheus/prometheus/releases/download/v2.22.1/prometheus-2.22.1.linux-amd64.tar.gz
     wget https://github.com/prometheus/alertmanager/releases/download/v0.21.0/alertmanager-0.21.0.linux-amd64.tar.gz
     wget https://github.com/qist/registy-consul-service/releases/download/release/consulR
    #### 安装docker consul 使用
    yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
    
    yum install docker-ce
    
    # 启动consul
    docker run -d --restart=always -p 8500:8500 -e CONSUL_BIND_INTERFACE='eth0' --name=consulone consul agent -server -bootstrap -ui -client='0.0.0.0'
    
    # 部署prometheus
    cd /apps
    mkdir -p prometheus/{bin,conf,data}
    tar -xvf prometheus-2.22.1.linux-amd64.tar.gz
    mv prometheus-2.22.1.linux-amd64/* prometheus/bin
    配置prometheus
    cd prometheus/conf
    vim   prometheus.yml
    # my global config
    global:
      scrape_interval: 1m
      scrape_timeout: 1m
      evaluation_interval: 10s
      external_labels:
        environment: aliyun1 # 环境名字 多环境建议配置
    
    alerting:
      alertmanagers:
        - static_configs:
          - targets: ['127.0.0.1:9093'] # 报警地址
    
    rule_files:
      - "/apps/prometheus/conf/rules/*.yaml"
    
    # A scrape configuration containing exactly one endpoint to scrape:
    # Here it's Prometheus itself.
    scrape_configs:
      # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
      #- job_name: 'prometheus'
    
        # metrics_path defaults to '/metrics'
        # scheme defaults to 'http'.
    
        #static_configs:
        #- targets: ['localhost:9090']
    
      - job_name: 'consul-prometheus'   # consul 自动发现名字
        scrape_interval: 30s
        scrape_timeout: 30s
        consul_sd_configs:
        - server: '127.0.0.1:8500'
          services: []
        relabel_configs:
        - source_labels: [__meta_consul_service]
          regex: "consul|aliyun-exporter" # 需要过滤的自动发现service 名
          action: drop
        - source_labels: [__meta_consul_service]
          separator: ;
          regex: (.*)
          target_label: service 
          replacement: $1
          action: replace
        - source_labels: [__meta_consul_service]
          separator: ;
          regex: (.*)
          target_label: job # 重写job 名为consul 配置的service 名字
          replacement: $1
          action: replace
        - source_labels: [__meta_consul_service_id]
          separator: ;
          regex: (.*)
          target_label: service_name # 添加标签 报警使用
          replacement: $1
          action: replace
    
      - job_name: 'aliyun-exporter'# 阿里云api 监控 拉取阿里云监控指标很慢所以改成1分钟拉取一次所以独立出来
        scrape_interval: 60s
        scrape_timeout: 60s
        consul_sd_configs:
        - server: '127.0.0.1:8500'
          services: []
        relabel_configs:
        - source_labels: [__meta_consul_service]
          regex: "aliyun-exporter"  # 需要监控 consul service
          action: keep
        - source_labels: [__meta_consul_service]
          separator: ;
          regex: (.*)
          target_label: service
          replacement: $1
          action: replace
        - source_labels: [__meta_consul_service]
          separator: ;
          regex: (.*)
          target_label: job
          replacement: $1
          action: replace
        - source_labels: [__meta_consul_service_id]
          separator: ;
          regex:  (.*)
          replacement: $1
          target_label: service_name # 添加标签 报警使用
          action: replace
    # 配置prometheus 启动参数
    vim prometheus
    PROMETHEUS_OPTS="--web.console.templates=/apps/prometheus/bin/consoles \
    --web.console.libraries=/apps/prometheus/bin/console_libraries \
    --config.file=/apps/prometheus/conf/prometheus.yml \
    --storage.tsdb.path=/apps/prometheus/data/prometheus \
    --storage.tsdb.retention.time=1d \
    --storage.tsdb.min-block-duration=2h \
    --storage.tsdb.max-block-duration=2h \
    --web.enable-lifecycle \
    --storage.tsdb.no-lockfile \
    --web.route-prefix=/"
    # 创建报警规则
    mkdir -p /apps/prometheus/conf/rules
    cp /apps/prometheus/conf/rules
    vim node-rules.yaml
    groups:
      - name: linux Disk Alerts
        rules:
          - alert: NodeDiskUseage
            expr: 100 - (node_filesystem_avail_bytes{fstype=~"ext4|xfs",mountpoint!="/apps/docker/overlay",mountpoint!="/var/lib/docker/devicemapper",mountpoint!="/var/lib/docker/containers"} / node_filesystem_size_bytes{fstype=~"ext4|xfs",mountpoint!="/apps/docker/overlay",mountpoint!="/var/lib/docker/devicemapper",mountpoint!="/var/lib/docker/containers"} * 100) > 90
            for: 1m
            labels:
              severity: high
            annotations:
              summary: "{{ $labels.instance }} Partition utilization too high"
              description: "{{ $labels.instance }} Partition usage greater than 90%(Currently used:{{$value}}%)"
          - alert: DiskIoPerformance
            expr: 100 - (avg by(instance,device,job,service,service_name) (irate(node_disk_io_time_seconds_total[1m])) * 100) < 60
            for: 1m
            labels:
              severity: warning
            annotations:
              summary: "{{ $labels.instance }} The IO utilization rate of incoming disk is too high"
              description: "{{ $labels.instance }} The incoming disk IO is greater than 60%(Currently used:{{$value}})"
    
      - name: linux Cpu
        rules:
          - alert: UserCpuUsage
            expr: sum(avg without (cpu)(irate(node_cpu_seconds_total{mode='user'}[5m]))*100) by (instance,job,service,service_name) >50
            for: 1m
            labels:
              severity: critical
            annotations:
              summary: "{{ $labels.instance }}"
              description: "{{ $labels.instance }} User CPU Use greater than 50%(Currently used:{{$value}}%)"
          - alert: CpuUsage
            expr: 100 - (avg by(instance,job,service,service_name) (irate(node_cpu_seconds_total{mode="idle"}[5m])) * 100) > 80
            for: 1m
            labels:
              severity: warning
            annotations:
              summary: "{{ $labels.instance }} CPU The utilization rate is too high"
              description: "{{ $labels.instance }} CPU Use greater than 60%(Currently used:{{$value}}%)"
          - alert: NodeCPUUsage95%
            expr: 100 - (avg by(instance,job,service,service_name) (irate(node_cpu_seconds_total{mode="idle"}[5m])) * 100) > 95
            for: 1m
            labels:
              severity: critical
            annotations:
              summary: "{{ $labels.instance }} CPU The utilization rate is too high"
              description: "{{ $labels.instance }} CPU Use greater than 95%(Currently used:{{$value}}%)"
      - name: linux Memory
        rules:
          #- alert:  MemoryLow
          #  expr: (1 - (node_memory_MemAvailable_bytes / (node_memory_MemTotal_bytes)))* 100>80
          #  for: 1m
          #  labels:
          #    severity: high
          #  annotations:
          #    summary: "{{ $labels.instance }} High memory usage"
          #    description: "{{ $labels.instance }} Memory greater than 90%(Currently used:{{$value}}%)"
          - alert: NodeMemoryUsageTooHigh95%
            expr: (1 - (node_memory_MemAvailable_bytes / (node_memory_MemTotal_bytes)))* 100>95
            for: 1m
            labels:
              severity: high
            annotations:
              summary: "{{ $labels.instance }} High memory usage"
              description: "{{ $labels.instance }} Memory greater than 95%(Currently used:{{$value}}%)"
      - name: linux Clock
        rules:
          - alert: NodeClockSkewDetected
            annotations:
              message: Clock on {{ $labels.instance }} is out of sync by more than 300s.
                Ensure NTP is configured correctly on this host.
              runbook_url: https://github.com/kubernetes-monitoring/kubernetes-mixin/tree/master/runbook.md#alert-name-nodeclockskewdetected
              summary: Clock skew detected.
            expr: |
              (
                node_timex_offset_seconds > 0.05
              and
                deriv(node_timex_offset_seconds[5m]) >= 0
              )
              or
              (
                node_timex_offset_seconds < -0.05
              and
                deriv(node_timex_offset_seconds[5m]) <= 0
              )
            for: 10m
            labels:
              severity: warning
          - alert: NodeClockNotSynchronising
            annotations:
              message: Clock on {{ $labels.instance }} is not synchronising. Ensure NTP
                is configured on this host.
              runbook_url: https://github.com/kubernetes-monitoring/kubernetes-mixin/tree/master/runbook.md#alert-name-nodeclocknotsynchronising
              summary: Clock not synchronising.
            expr: |
              min_over_time(node_timex_sync_status[5m]) == 0
            for: 10m
            labels:
              severity: warning
      - name: Instance Down
        rules:
          - alert: InstanceDown
            expr: (up{job!="node-exporter",job!="windows-exporter"}) == 0
            for: 2m
            labels:
              severity: critical
            annotations:
              summary: "Instance {{ $labels.instance }} down"
              description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 2 minute."
      - name: Node Down
        rules:
          - alert: NodeDown
            expr: (up{job=~"node-exporter|windows-exporter"}) == 0
            for: 2m
            labels:
              severity: critical
            annotations:
              summary: "Node {{ $labels.instance }} down"
              description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 2 minute."
      - name: linux Network err
        rules:
          - alert: NodeNetworkReceiveErrs
            annotations:
              description: '{{ $labels.instance }} interface {{ $labels.device }} has encountered
                {{ printf "%.0f" $value }} receive errors in the last two minutes.'
              runbook_url: https://github.com/kubernetes-monitoring/kubernetes-mixin/tree/master/runbook.md#alert-name-nodenetworkreceiveerrs
              summary: Network interface is reporting many receive errors.
            expr: |
              increase(node_network_receive_errs_total[2m]) > 10
            for: 1h
            labels:
              severity: warning
          - alert: NodeNetworkTransmitErrs
            annotations:
              description: '{{ $labels.instance }} interface {{ $labels.device }} has encountered
                {{ printf "%.0f" $value }} transmit errors in the last two minutes.'
              runbook_url: https://github.com/kubernetes-monitoring/kubernetes-mixin/tree/master/runbook.md#alert-name-nodenetworktransmiterrs
              summary: Network interface is reporting many transmit errors.
            expr: |
              increase(node_network_transmit_errs_total[2m]) > 10
            for: 1h
            labels:
              severity: warning
          - alert: NodeHighNumberConntrackEntriesUsed
            annotations:
              description: '{{ $value | humanizePercentage }} of conntrack entries are used'
              runbook_url: https://github.com/kubernetes-monitoring/kubernetes-mixin/tree/master/runbook.md#alert-name-nodehighnumberconntrackentriesused
              summary: Number of conntrack are getting close to the limit
            expr: |
              (node_nf_conntrack_entries / node_nf_conntrack_entries_limit) > 0.75
            labels:
              severity: warning
    vim  windows-rules.yaml
    groups:
    - name: Windows Disk Alerts
      rules:
    
      # Sends an alert when disk space usage is above 95%
      #- alert: DiskSpaceUsage
      #  expr: 100.0 - 100 * (windows_logical_disk_free_bytes / windows_logical_disk_size_bytes) > 80
      #  for: 10m
      #  labels:
      #    severity: high
      #  annotations:
      #    summary: "Disk Space Usage (instance {{ $labels.instance }})"
      #    description: "Disk Space on Drive is used more than 80%\n  VALUE = {{ $value }}\n  LABELS: {{ $labels }}"
    
      - alert: NodeDiskUseage
        expr: 100.0 - 100 * (windows_logical_disk_free_bytes / windows_logical_disk_size_bytes) > 90
        for: 10m
        labels:
          severity: critical
        annotations:
          summary: "Disk Space Usage (instance {{ $labels.instance }})"
          description: "Disk Space on Drive is used more than 95%\n  VALUE = {{ $value }}\n  LABELS: {{ $labels }}"
    
      - alert: DiskFilling
        expr: 100 * (windows_logical_disk_free_bytes / windows_logical_disk_size_bytes) < 15 and predict_linear(windows_logical_disk_free_bytes[6h], 4 * 24 * 3600) < 0
        for: 10m
        labels:
          severity: warning
        annotations:
          summary: "Disk full in four days (instance {{ $labels.instance }})"
          description: "{{ $labels.volume }} is expected to fill up within four days. Currently {{ $value | humanize }}% is available.\n VALUE = {{ $value }}\n LABELS: {{ $labels }}"
    
    - name: Windows Cpu
      rules:
      - alert: CpuUsage
        expr: 100 - (avg by (instance) (irate(windows_cpu_time_total{mode="idle"}[2m])) * 100) > 80
        for: 10m
        labels:
          severity: warning
        annotations:
          summary: "CPU Usage (instance {{ $labels.instance }})"
          description: "CPU Usage is more than 80%\n  VALUE = {{ $value }}\n  LABELS: {{ $labels }}"
      - alert: NodeCPUUsage95%
        expr: 100 - (avg by (instance) (irate(windows_cpu_time_total{mode="idle"}[2m])) * 100) > 95
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: "CPU Usage (instance {{ $labels.instance }})"
          description: "CPU Usage is more than 95%\n  VALUE = {{ $value }}\n  LABELS: {{ $labels }}"
    
    - name: Windows Memory
      rules:
      # Alert on hosts that have exhausted all available physical memory
      - alert: MemoryExhausted
        expr: windows_os_physical_memory_free_bytes == 0
        for: 10m
        labels:
          severity: high
        annotations:
          summary: "Host {{ $labels.instance }} is out of memory"
          description: "{{ $labels.instance }} has exhausted all available physical memory"
    
      #- alert: MemoryLow
      #  expr: 100 - 100 * windows_os_physical_memory_free_bytes / windows_cs_physical_memory_bytes > 80
      #  for: 10m
      #  labels:
      #    severity: warning
      #  annotations:
      #    summary: "Memory usage for host {{ $labels.instance }} is greater than 80%"
      - alert: NodeMemoryUsageTooHigh95%
        expr: 100 - 100 * windows_os_physical_memory_free_bytes / windows_cs_physical_memory_bytes > 95
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: "Memory usage for host {{ $labels.instance }} is greater than 95%"
      #- name: Microsoft SQL Server Alerts
      #rules:
      #- alert: SQL Server Agent DOWN
      #  expr: windows_service_state{instance="SQL",exported_name="sqlserveragent",state="running"} == 0
      #  for: 3m
      #  labels:
      #    severity: high
      #  annotations:
      #    summary: "Service {{ $labels.exported_name }} down"
      #    description: "Service {{ $labels.exported_name }} on instance {{ $labels.instance }} has been down for more than 3 minutes."
    vim docker-exporter.yaml
    groups:
    - name: DockerContainer
      rules:
      - alert: DockerContainerDown
        expr: rate(container_last_seen{id=~"/docker/.+"}[5m]) < 0.5
        for: 1m
        labels:
          severity: critical
         # Prometheus templates apply here in the annotation and label fields of the alert.
        annotations:
          description: '服务器: {{ $labels.service_name }}中镜像名为: {{ $labels.image }},容器名: {{ $labels.name }} 挂了'
          summary: 'Container {{ $labels.instance }} dow'
    vim  mysql-rules.yaml
    groups:
    - name: GaleraAlerts
      rules:
      - alert: MySQLGaleraNotReady
        expr: mysql_global_status_wsrep_ready != 1
        for: 5m
        labels:
          severity: warning
        annotations:
          description: '{{$labels.job}} on {{$labels.instance}} is not ready.'
          summary: Galera cluster node not ready
      - alert: MySQLGaleraOutOfSync
        expr: (mysql_global_status_wsrep_local_state != 4 and mysql_global_variables_wsrep_desync
          == 0)
        for: 5m
        labels:
          severity: warning
        annotations:
          description: '{{$labels.job}} on {{$labels.instance}} is not in sync ({{$value}}
            != 4).'
          summary: Galera cluster node out of sync
      - alert: MySQLGaleraDonorFallingBehind
        expr: (mysql_global_status_wsrep_local_state == 2 and mysql_global_status_wsrep_local_recv_queue
          > 100)
        for: 5m
        labels:
          severity: warning
        annotations:
          description: '{{$labels.job}} on {{$labels.instance}} is a donor (hotbackup)
            and is falling behind (queue size {{$value}}).'
          summary: xtradb cluster donor node falling behind
      - alert: MySQLReplicationNotRunning
        expr: mysql_slave_status_slave_io_running == 0 or mysql_slave_status_slave_sql_running
          == 0
        for: 2m
        labels:
          severity: critical
        annotations:
          description: Slave replication (IO or SQL) has been down for more than 2 minutes.
          summary: Slave replication is not running
      - alert: MySQLReplicationLag
        expr: (mysql_slave_lag_seconds > 30) and on(instance) (predict_linear(mysql_slave_lag_seconds[5m],
          60 * 2) > 0)
        for: 1m
        labels:
          severity: critical
        annotations:
          description: The mysql slave replication has fallen behind and is not recovering
          summary: MySQL slave replication is lagging
      - alert: MySQLReplicationLag
        expr: (mysql_heartbeat_lag_seconds > 30) and on(instance) (predict_linear(mysql_heartbeat_lag_seconds[5m],
          60 * 2) > 0)
        for: 1m
        labels:
          severity: critical
        annotations:
          description: The mysql slave replication has fallen behind and is not recovering
          summary: MySQL slave replication is lagging
      - alert: MySQLInnoDBLogWaits
        expr: rate(mysql_global_status_innodb_log_waits[15m]) > 10
        labels:
          severity: warning
        annotations:
          description: The innodb logs are waiting for disk at a rate of {{$value}} /
            second
          summary: MySQL innodb log writes stalling
    ### 等等监控规则
    创建prometheus
    useradd prometheus -s /sbin/nologin -M
    chown -R prometheus:prometheus /apps/prometheus
    配置启动文件
    vim /usr/lib/systemd/system/prometheus.service
    [Unit]
    Description=prometheus
    [Service]
    LimitNOFILE=1024000
    LimitNPROC=1024000
    LimitCORE=infinity
    LimitMEMLOCK=infinity
    EnvironmentFile=-/apps/prometheus/conf/prometheus
    ExecStart=/apps/prometheus/bin/prometheus $PROMETHEUS_OPTS
    Restart=on-failure
    KillMode=process
    User=prometheus
    [Install]
    WantedBy=multi-user.target
    # 启动prometheus
    systemctl start prometheus 
    # 开机启动
    systemctl enable prometheus
    # 部署consulR 注册监控服务 每个被监控的节点都需部署
    cd /apps
    chmod +x consulR
    mv consulR /tmp
    mkdir -p consulR/{bin,conf,logs}
    mv /tmp/consulR consulR/bin
    # 配置 consulR 注册prometheus 到consul
    # 配置说明https://github.com/qist/registy-consul-service/blob/master/conf/consul.yaml
    cd consulR/conf
    vim prometheus-exporter.yaml
    System:
      ServiceName: registy-consul-service
      ListenAddress: 0.0.0.0
    #  Port: 9984 # 多exporter 注释掉
      FindAddress: 10.8.23.80:80
    Logs:
      LogFilePath: /apps/consulR/logs/info.log
      LogLevel: trace
    Consul:
      Address: 10.8.23.80:8500,10.8.23.80:8500,10.8.23.80:8500
      Token:
      CheckHealth: /
      CheckType: tcp
      CheckTimeout: 5s
      CheckInterval: 5s
      CheckDeregisterCriticalServiceAfter: false
      CheckDeregisterCriticalServiceAfterTime: 30s
    Service:
      Tag: prometheus-exporter
      Address:
      Port: 9090
    # 注册node-exporter
    vim node-exporter.yaml
    System:
      ServiceName: registy-consul-service
      ListenAddress: 0.0.0.0
    #  Port: 9984
      FindAddress: 10.8.23.80:80
    Logs:
      LogFilePath: /apps/consulR/logs/info.log
      LogLevel: trace
    Consul:
      Address: 10.8.23.80:8500,10.8.23.80:8500,10.8.23.80:8500
      Token:
      CheckHealth: /
      CheckType: tcp
      CheckTimeout: 5s
      CheckInterval: 5s
      CheckDeregisterCriticalServiceAfter: false
      CheckDeregisterCriticalServiceAfterTime: 30s
    Service:
      Tag: node-exporter
      Address:
      Port: 9100
    # 创建启动文件
    vim /usr/lib/systemd/system/consulR@.service
    [Unit]
    Description=ConsulR process %i
    [Service]
    #LimitNOFILE=1024000
    #LimitNPROC=1024000
    LimitCORE=infinity
    LimitMEMLOCK=infinity
    ExecStart=/apps/consulR/bin/consulR -confpath=/apps/consulR/conf/%i.yaml
    ProtectHome=true
    ProtectSystem=full
    PrivateTmp=true
    TasksMax=infinity
    Restart=on-failure
    StartLimitInterval=30min
    StartLimitBurst=30
    RestartSec=20s
    [Install]
    WantedBy=multi-user.target
    # 启动consulR 并z注册到consul 业务进程必须先启动
    systemctl start consulR@node-exporter
    systemctl start consulR@prometheus-exporter
    # 配置开机启动
    systemctl enable consulR@node-exporter
    systemctl enable  consulR@prometheus-exporter
    # 部署alertmanager
    cd /apps
    tar -xvf alertmanager-0.21.0.linux-amd64.tar.gz
    mkdir alertmanager/{bin,conf,data}
    mv alertmanager-0.21.0.linux-amd64/* alertmanager/bin
    # 创建配置文件
    cd alertmanager/conf
    vim alertmanager.yml
    "global":
      "resolve_timeout": "1m"
    
    "route":
      "group_by": ["alertname","container_name","namespace","severity","pod_name","instance","service_name","environment"]
      "group_wait": "30s"
      "group_interval": "30m"
      "repeat_interval": "3h"
      "receiver": "web.hook"
      routes:
      - "receiver": "web.hook"
        "group_by": ["alertname","container_name","namespace","severity","pod_name","instance","service_name","environment"]
        "group_wait": "10s"
        "group_interval": "5m"
        "repeat_interval": "30m"
        match_re:
          "severity": "critical"
      - "receiver": "web.hook"
        "group_by": ["alertname","container_name","namespace","severity","pod_name","instance","service_name","environment"]
        "group_wait": "10s"
        "group_interval": "30m"
        "repeat_interval": "1h"
        match_re:
          "severity": "high"
    "receivers":
    - "name": "web.hook"
      "webhook_configs":
      - "url": "http://xxxxxxx.xxxxx.com/k8smntoauth/api/alert_api/alert/prometheus/"  # 专用报警平台,可以参考其它配置 alertmanager 
        "http_config":
          "bearer_token": ""
    "inhibit_rules":
      - "source_match":
          "severity": "critical"
        "target_match":
          "severity": "warning"
        "equal": ["alertname", "dev", "instance"]
    # alertmanager 启动配置文件
    vim alertmanager
    ALERTMANAGER_OPT="--config.file=/apps/alertmanager/conf/alertmanager.yml \
                      --storage.path=/apps/alertmanager/data \
                      --data.retention=120h \
                      --web.listen-address=:9093 \
                      --web.route-prefix=/"
    # 配置alertmanager 启动脚本
    vim /usr/lib/systemd/system/alertmanager.service
    [Unit]
    Description=alertmanager
    [Service]
    LimitNOFILE=1024000
    LimitNPROC=1024000
    LimitCORE=infinity
    LimitMEMLOCK=infinity
    EnvironmentFile=-/apps/alertmanager/conf/alertmanager
    ExecStart=/apps/alertmanager/bin/alertmanager $ALERTMANAGER_OPT
    Restart=on-failure
    KillMode=process
    User=prometheus
    [Install]
    WantedBy=multi-user.target
    # 设置运行用户
    chown -R prometheus:prometheus /apps/alertmanager
    # 启动alertmanager
    systemctl start alertmanager
    # 开机启动
    systemctl enable alertmanager
    # 启动的环境参数次二进制方式部署

    K8S 集群部署使用(kube-prometheus)

    # 下载 代码
    git clone https://github.com/prometheus-operator/kube-prometheus.git
    # 或者 git clone https://github.com/qist/k8s.git
    # 主要修改文件 prometheus-prometheus.yaml
    apiVersion: monitoring.coreos.com/v1
    kind: Prometheus
    metadata:
      labels:
        prometheus: k8s
      name: k8s
      namespace: monitoring
    spec:
      alerting:
        alertmanagers:
        - name: alertmanager-main
          namespace: monitoring
          port: web
      image: quay.io/prometheus/prometheus:v2.22.1
      nodeSelector:
        kubernetes.io/os: linux
      podMonitorNamespaceSelector: {}
      podMonitorSelector: {}
      replicas: 2
      # 取消系统生成 external_labels
      replicaExternalLabelName: ""
      prometheusExternalLabelName: ""
      # 配置外部标签多环境报警使用
      externalLabels:
        environment: k8s # 环境env 必须修改
      #secrets:  # 添加etcd 跟istio https 监控请取消注释
      #- etcd-certs
      #- istio-certs
      #configMaps: # 添加blackbox-exporter 站点批量监控
      #- prometheus-files-discover
      resources:
        requests:
          memory: 4096Mi
      retention: 2d
      #storage:  #使用外部存储 请取消注释
      #  volumeClaimTemplate:
      #    spec:
      #      accessModes:
      #      - ReadWriteOnce
      #      resources:
      #        requests:
      #          storage: 50Gi
      #      storageClassName: alicloud-disk-ssd
      #      volumeMode: Filesystem
      ruleSelector:
        matchLabels:
          prometheus: k8s
          role: alert-rules
      additionalScrapeConfigs:
        name: additional-configs
        key: prometheus-additional.yaml   # 参数 qist 仓库 k8s/k8s-yaml/kube-prometheus/prometheus
      securityContext:
        fsGroup: 2000
        runAsNonRoot: true
        runAsUser: 1000
      serviceAccountName: prometheus-k8s
      serviceMonitorNamespaceSelector: {}
      serviceMonitorSelector: {}
      version: v2.22.1
    # 其它直接 应用
    kubectl apply -f setup/.
    kubectl apply -f .

    部署victoriametrics

    # 为啥使用victoriametrics victoriametrics 存储空间压缩的很小 prometheus 占用空间很大
    # prometheus 联邦集群一天产生几百GB 的监控数据
    # victoriametrics 每天产生几G的监控数据压缩的很小  victoriametrics 配置可以自己刷新
    # 可以使用prometheus remote_write 方案跟prometheus 联邦集群方案 这里选择 prometheus 联邦集群方案 remote_write 方案在victoriametrics 重启会占用大量的带宽,所以这里我选择prometheus 联邦集群方案 抓取federate
    # prometheus remote_write 写法
    remote_write:
    - url: http://192.168.2.220:8428/api/v1/write
      remote_timeout: 30s
      queue_config:
        capacity: 20000
        max_shards: 50
        min_shards: 1
        max_samples_per_send: 10000
        batch_send_deadline: 60s
        min_backoff: 30ms
        max_backoff: 100ms
    # K8S 集群   prometheus-prometheus.yaml 添加
      remoteWrite:
      - url: http://192.168.2.220:8428/api/v1/write 
        batchSendDeadline: 60s
        capacity: 20000
        maxBackoff: 100ms
        maxSamplesPerSend: 10000
        maxShards: 50
        minBackoff: 30ms
        minShards: 1
    # victoriametrics 兼容prometheus 配置
    # 节点192.168.2.220
    # 下载 victoriametrics 可选集群版本跟单机版本这里我选择单机版本
    cd /apps
    wget https://github.com/VictoriaMetrics/VictoriaMetrics/releases/download/v1.50.2/victoria-metrics-v1.50.2.tar.gz
    tar -xvf victoria-metrics-v1.50.2.tar.gz
    # 创建运行目录
    mkdir -p victoriametrics/{bin,conf,data}
    mv victoria-metrics-prod victoriametrics/bin/
    # 创建配置文件
    cd victoriametrics/conf
    vim prometheus.yml
    # my global config
    global:
      scrape_interval:     15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
      evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
      # scrape_timeout is set to the global default (10s).
    
    # Alertmanager configuration
    alerting:
      alertmanagers:
      - static_configs:
        - targets:
          # - alertmanager:9093
    
    # Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
    rule_files:
      # - "first_rules.yml"
      # - "second_rules.yml"
    
    # A scrape configuration containing exactly one endpoint to scrape:
    # Here it's Prometheus itself.
    scrape_configs:
      # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
      - job_name: 'victoriametrics'
    
        # metrics_path defaults to '/metrics'
        # scheme defaults to 'http'.
    
        static_configs:
        - targets: ['localhost:8428'] # 静态监控
    
      - job_name: 'federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             #- '{job=~"prometheus.*"}'
             - '{environment=~".*"}'   # 拉取所有environment 
        static_configs:
          - targets:
            - '192.168.201.62:9090' # ack service IP
            - '172.100.41.118:9090' # 办公idc K8S  service IP
    
      - job_name: 'aliyun-federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{job=~"prometheus.*"}'  # 基于job 模式拉取
             - '{job=~"aliyun.*"}'
             - '{job=~"windows.*"}'
        static_configs:
          - targets:
            - '10.8.23.80:9090'
            - '172.16.4.141:9090'
    
      - job_name: 'huaweiyun-federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{job=~"huaweiyun.*"}' # 基于job 模式拉取
             - '{job=~"prometheus.*"}'
        static_configs:
          - targets:
            - '10.9.12.133:9090'
      - job_name: 'redis-federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
    #         - '{job=~"mysql.*"}'
             - '{job=~"redis.*"}'   # 基于job 模式拉取
        static_configs:
          - targets:
            - '10.8.23.80:9090'
            - '172.16.4.141:9090'
    
      - job_name: 'mysql-ddd-federate'
        scrape_interval: 60s
        scrape_timeout: 60s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{instance=~"10.8.27.*",job=~"mysql.*"}' # 基于ip 地址+job 拉取监控数据量很大这样分区
        static_configs:
          - targets:
            - '10.8.23.80:9090'
    
      - job_name: 'mysql-usd-federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{instance=~"10.8.12.*",job=~"mysql.*"}' # 基于ip 地址+job 拉取监控数据量很大这样分区
        static_configs:
          - targets:
            - '10.8.23.80:9090'
    
      - job_name: 'mysql-web-federate'
        scrape_interval: 60s
        scrape_timeout: 60s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{instance=~"10.8.28.*|10.8.26.*|10.8.38.*|10.8.40.*",job=~"mysql.*"}' # 基于ip 地址+job 拉取监控数据量很大这样分区
        static_configs:
          - targets:
            - '10.8.23.80:9090'
    
      - job_name: 'mysql-bs-federate'
        scrape_interval: 60s
        scrape_timeout: 60s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{job=~"mysql.*"}'
        static_configs:
          - targets:
            - '172.16.4.141:9090'
    
      - job_name: 'mysql-huaweiyun'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{job=~"mysql.*"}'  # 基于job 模式拉取
        static_configs:
          - targets:
            - '10.9.12.133:9090'
    
      - job_name: 'docker-federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{job=~"alertmanager.*"}' # 基于job 模式拉取
             - '{job=~"consul.*"}'
             - '{job=~"docker.*"}'
             - '{job=~"elasticsearch.*"}'
             - '{job=~"haproxy.*"}'
             - '{job=~"nginx-vts.*"}'
             - '{job=~"rabbitmq.*"}'
        static_configs:
          - targets:
            - '10.8.23.80:9090'
            - '172.16.4.141:9090'
            - '10.9.12.133:9090'
    
      - job_name: 'node-federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{job=~"node.*"}' # 基于job 模式拉取
        static_configs:
          - targets:
            - '10.8.23.80:9090'
            - '172.16.4.141:9090'
            - '10.9.12.133:9090'
    
      - job_name: 'dns-federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{job=~"coredns.*"}'  # 基于job 模式拉取
             - '{job=~"online.*"}'
        static_configs:
          - targets:
            - '10.8.23.80:9090'
            - '172.16.4.141:9090'
            - '10.9.12.133:9090'
    
      - job_name: 'blackbox-federate'
        scrape_interval: 30s
        scrape_timeout: 30s
        honor_labels: true
        metrics_path: '/federate'
    
        params:
          'match[]':
             - '{job=~"blackbox-.*"}' # 基于job 模式拉取
        static_configs:
          - targets:
            - '10.8.23.80:9090'
            - '172.16.4.141:9090'
            - '10.9.12.133:9090'
     # 配置 victoriametrics 启动参数
     vim victoriametrics
     VICTORIAMETRICS_OPT="-http.connTimeout=5m \
    -influx.maxLineSize=100MB \
    -import.maxLineLen=100MB \
    -maxConcurrentInserts=20000 \
    -maxInsertRequestSize=100MB \
    -maxLabelsPerTimeseries=200 \
    -insert.maxQueueDuration=5m \
    -dedup.minScrapeInterval=60s \
    -bigMergeConcurrency=20 \
    -retentionPeriod=180d \
    -search.maxQueryDuration=10m \
    -search.maxQueryLen=30MB \
    -search.maxQueueDuration=60s \
    -search.maxConcurrentRequests=32 \
    -storageDataPath=/apps/victoriametrics/data \
    -promscrape.streamParse=true \
    -promscrape.config=/apps/victoriametrics/conf/prometheus.yml \
    -promscrape.configCheckInterval=30s \
    -promscrape.consulSDCheckInterval=30s \
    -promscrape.discovery.concurrency=2000 \
    -promscrape.fileSDCheckInterval=30s \
    -promscrape.maxScrapeSize=100MB \
    "
    # 配置启动文件
    vim /usr/lib/systemd/system/victoriametrics.service
    [Unit]
    Description=victoriametrics
    [Service]
    LimitNOFILE=1024000
    LimitNPROC=1024000
    LimitCORE=infinity
    LimitMEMLOCK=infinity
    EnvironmentFile=-/apps/victoriametrics/conf/victoriametrics
    ExecStart=/apps/victoriametrics/bin/victoria-metrics-prod $VICTORIAMETRICS_OPT
    Restart=on-failure
    KillMode=process
    [Install]
    WantedBy=multi-user.target
    # 启动
    service victoriametrics start
    # 开机启动
    chkconfig victoriametrics on

    部署grafana

    # 使用二进制或者K8S 模式部署 我这里以前使用K8S 不是了grafana 不想再去从新部署所以 就修改了数据源
    # 参考下面url 记得添加外部存储
    https://github.com/qist/k8s/tree/master/k8s-yaml/kube-prometheus/grafana
    # environment-dashboards 目录为多环境dashboards 
    # 使用 import-dashboards.sh 导入即可
    # grafana 数据源 选择prometheus



    prometheus-alertmanager 多环境配置



  • 相关阅读:
    beeline链接hive报错
    Java并发之FairSync和NonfairSync
    如何在 Linux 中将文件编码转换为 UTF-8
    Spring Boot运行原理
    jvm垃圾回收
    jvm调试工具
    Nginx相关
    docker 配置jar ,运行
    centos7的一些安装问题
    Docker
  • 原文地址:https://www.cnblogs.com/kebibuluan/p/15625242.html
Copyright © 2020-2023  润新知