• PPS2013校园招聘笔试题


    转载请标明出处,原文地址:http://blog.csdn.net/hackbuteer1/article/details/11473405
    一、简答题
    (1)一位老师有2个推理能力很强的学生,他告诉学生他手里有以下的牌:
    黑桃:2 , 5 , 7 , 9 , J , K
    红心:3 , 4 , 9 , J , K
    梅花:5 , 8 , 9 , Q
    方块:2 , 7 , 8
    然后从中拿出一张牌,告诉A这张牌的大小,告诉了B这张牌的花色;
    A:我不知道这张是什么牌
    B:我就知道你肯定不知道这张是什么牌
    A:现在我知道
    B:现在我也知道了
    请问这张是什么牌?
    答:方块8

    (2)有11个乒乓球,其中有一个球是伪劣产品并存在质量较轻的问题,现有一个没有砝码的天平,只能称3次把那个假货给称出来。
    答:
    第一次,天平两端各放5个乒乓球,如果天平平衡,那么剩下的那个就是伪劣产品。
    如果不平衡,则将天平较轻那端的5个乒乓球选出来,然后在天平两端各放2个乒乓球,如果天平平衡,那么剩下的那个就是伪劣产品。否则,将天平较轻那端的2个乒乓球选出来,放在天平上重新测量,天平较轻端的那个乒乓球就是伪劣产品。

    (3)说明指针与引用的区别。
    答:指针是一个实体,而引用仅是个别名;
    ●引用只能在定义时被初始化一次,之后不可变;指针可变;引用“从一而终”,指针可以“见异思迁”;
    ●引用没有const,指针有const,const的指针不可变;
    ●引用不能为空,指针可以为空;
    ●“sizeof 引用”得到的是所指向的变量(对象)的大小,而“sizeof 指针”得到的是指针本身的大小;
    ●指针和引用的自增(++)运算意义不一样;
    ●引用是类型安全的,而指针不是 (引用比指针多了类型检查
    从内存分配上看:程序为指针变量分配内存区域,而引用不分配内存区域。指针:指向另一个内存空间的变量,我们可以通过它来索引另一个内存空间的内容,本身有自己的内存空间。 

    (4)列出C++类型转换操作符,并分别举例。
    dynamic_cast: 在多态类型转换时使用,用来执行继承体系中"安全的向下转型或跨系转型动作",就是子类对象指针转化为父类对象指针。实现在运行时,并进行运行时检测,如果转换失败,返回值是NULL。
    static_cast:与dynamic_cast相反,static_cast是在编译时转换类型的,故称为static_cast,它可以用在值类型转换中
    const_cast:一般用于去除const, volatile等修饰属性上.
    reinterpret_cast:特意用于底层的强制转型,这个操作符能够在非相关的类型之间转换。操作结果只是简单的从一个指针到别的指针的值的二进制拷贝。在类型之间指向的内容不做任何类型的检查和转换。

    (5)写个简单的函数,用于判断CPU的字节序(little endian/big endian)

    //若处理器是Big_endian的,则返回0;若是Little_endian的,则返回1。
    int checkCPU(void)
    {
    	union
    	{
    		int a;
    		char b;
    	}c;
    	c.a = 1;
    	return (c.b == 1);
    }

    (6)实现一个128位整数的类,并且完成后面的函数,测试一个数是否为素数。
    class int128
    {
    };
    bool isPrime(int128 & number)
    {
    ...
    }
    答:

    #include<bitset>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<deque>
    using namespace std;
    
    class int128;
    
    void shift(int128 & in,deque<bool> & de);
    
    template<size_t N>
    bool operator<(bitset<N> const& b1,bitset<N> const& b2)
    {
    	int i=N;
    	while( i-- && b1[i]==b2[i] ) { }
    
    	return ((-1 == i) ? false : (b1[i]<b2[i]));
    }
    
    class int128
    {
        bitset<128> number;
    public:
        explicit int128(string str):number(str){}
        int128(bitset<128>const& b):number(b){}
        int128(int a=0,int b=0,int c=0,int d=0)
    	{
            bitset<32> b1(a),b2(b),b3(c),b4(d);
    		int i, k=128;
    		for(i=32; i; number[--k]=b1[--i]) { }
    		for(i=32; i; number[--k]=b2[--i]) { }
    		for(i=32; i; number[--k]=b3[--i]) { }
    		for(i=32; i; number[--k]=b4[--i]) { }
        }
        bool operator[](size_t i)const
    	{
            return number[i];
        }
        bitset<128>::reference operator[](size_t i)
    	{
            return number[i];
        }
        friend bool operator<(int128 const& i1,int128 const& i2)
    	{
            return i1.number<i2.number;
        }
    
        friend int128 operator+(int128 const& i1,int128 const& i2)
    	{
            if(i1==0)return i2;if(i2==0)return i1;
            int128 result;
            bitset<2> sum;
    
            for(int i=0;i<128;++i)
    		{
                sum=i1[i]+i2[i]+sum.to_ulong();
                result[i]=sum[0];
                sum>>=1;
            }
    
            return result;
        }
    
        friend int128 operator-(int128 const& i1,int128 const& i2)
    	{
            if(i2==0)
    			return i1;
    
            int128 result=i1;
    
            for(int i=0;i<128;++i)
    		{
                if(i2[i]==0)   {}
                else
    			{
                    if(result[i]==1)
    					result[i]=0;
                    else
    				{
                        int k=i;
                        while(k<128 && result[k]==0)
    					{
    						result[k]=1;
    						++k;
    					}
                        if(k!=128)
    						result[k]=0;
                    }
                }
            }
    
            return result;
        }
        friend int128 operator*(int128 const& i1,int128 const& i2)
    	{
            if(i1==0 || i2==0)
    			return int128();
            if(i1==1)
    			return i2;
    		if(i2==1)
    			return i1;
    
            int128 acc=int128();
    
            for(int i=0;i<128;++i)
    		{
                if(i2[i]==1)
    			{
                    acc=acc+(i1<<i);
                }
            }
    
            return acc;
        }
        friend int128 operator/(int128 const& i1,int128 const& i2)
    	{
            if(i1 < i2)
    			return int128();
            deque<bool> de;
            bool flag = 0;
            for(int i = 127 ; i >= 0 ; --i)
    		{
                if(flag == 0 && i1[i] == 0)   {}
                else
    			{
                    flag = 1;
                    de.push_back(i1[i]);
                }
            }
    
            int128 div = int128();
            int128 result = int128();
    
            while(!de.empty())
    		{
                shift(div,de);
                if(div < i2)
    			{
                    result = result<<1;
                }
                else
    			{
                    result = (result<<1) + int128(0,0,0,1);
                    div = div - i2;
                }
            }
    
            return result;
        }
        friend int128 operator%(int128 const& i1,int128 const& i2)
    	{
            if(i1 < i2)
    			return i1;
            deque<bool> de;
            bool flag = 0;
            for(int i = 127 ; i >= 0 ; --i)
    		{
                if(flag == 0 && i1[i] == 0)   {}
                else
    			{
                    flag = 1;
                    de.push_back(i1[i]);
                }
            }
    
            int128 div = int128();
            int128 result = int128();
    
            while(!de.empty())
    		{
                shift(div,de);
                if(div < i2)
    			{
                    result = result<<1;
                }
                else
    			{
                    result = (result<<1) + int128(0,0,0,1);
                    div = div - i2;
                }
            }
    
            return div;
        }
        friend bool operator==(int128 const& i,int const k)
    	{
            bitset<32> bb(k);
            for(int g = 0 ; g < 32 ; ++g)
    		{
                if(i[g] != bb[g])
    				return 0;
            }
            return 1;
        }
        void operator=(bitset<128>const& b)
    	{
            number = b;
        }
        friend ostream& operator<<(ostream& o,int128 const& i)
    	{
            o<<i.number;
            return o;
        }
        int128 operator<<(size_t step)const
    	{
            return int128(number<<step);
        }
        unsigned long to_ulong()const
    	{
    		return *((unsigned long*)&number);
        }
    
    public:
    	bool ToDecimalStr(std::string &str)
    	{
    		str.clear();
    		char buf[128] = {0};
    		int128 Radix(0, 0, 0, 10);
    		for(int128 num = number; !(num == 0); num = num/Radix)
    		{
    			if( sprintf_s(buf, 64, "%d", ((int)(num%Radix).to_ulong())) < 0 )
    			{
    				return false;
    			}
    			str = buf + str;
    		}
    		return true;
    	}
    
    	static void Print(int128 & data, bool bEndl = true)
    	{
    		string str;
    		if( data.ToDecimalStr(str) )
    		{
    			printf("%s%s", str.c_str(), (bEndl?"
    ":""));
    		}
    	}
    };
    
    static int128 const one = int128(0,0,0,1);
    
    template<size_t N>
    void add_one(bitset<N>& b)
    {
        int i = 0;
        while(i < N && b[i] == 1)
    	{
            b[i] = 0;
            ++i;
        }
        if(i == N)
    		return;
        b[i] = 1;
    }
    
    void add_one(int128& k)
    {
        int i = 0;
        while(i < 128 && k[i] == 1)
    	{
            k[i] = 0;
            ++i;
        }
        if(i == 128)
    		return;
        k[i] = 1;
    }
    
    void shift(int128 & in,deque<bool> & de)
    {
        if(de.front()==1)
    	{
            de.pop_front();
            in=(in<<1)+one;
        }
        else
    	{
            de.pop_front();
            in=in<<1;
        }
    }
    
    bool IsPrime(int128 const& number)
    {
        for(int128 i = int128(0,0,0,2) ; i < number ; add_one(i))
    	{
            if(number%i == 0)
    			return 0;
        }
        return 1;
    }

    (7)对二叉树进行排序,排序后的结果为二叉排序树。
    二叉排序树又称二叉查找树,它或者是一棵空树,或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;(3)左、右子树也分别为二叉排序树;
    struct STreeNode
    {
    int key;
    STreeNode* left_child;
    STreeNode* right_child;
    };
    //返回值为排序后的根节点
    STreeNode* bt2bst(STreeNode* root_node)
    {
    }

    struct STreeNode
    {
    	int key;
    	STreeNode* left_child;
    	STreeNode* right_child;
    };
    
    void InsertBST(STreeNode* t , int key)
    {
        if(NULL == t)
        {
            t = new STreeNode; 
            t->left_child = t->right_child = NULL;
            t->key = key;
            return; 
        }
    
        if(key < t->key) 
            InsertBST(t->left_child , key);
        else
            InsertBST(t->right_child , key ); 
    }
    
    //先序遍历树并插入建立排序树
    void PreOrder(STreeNode* t , STreeNode* tBST)
    {
       if(NULL != t)
       {
    	   InsertBST(tBST , t->key);
    	   PreOrder(t->left_child , tBST);
    	   PreOrder(t->right_child , tBST);
       }
    }
    
    //目标函数
    STreeNode* bt2bst(STreeNode* root_node)
    {
        STreeNode* bstTreeRoot = NULL;
        PreOrder(root_node , bstTreeRoot);
        return bstTreeRoot;
    }

    二、扩展题
    (1)列出几种你了解的IPC机制。
    答:共享内存:是一片指定的物理内存区域,这个区域通常是在存放正常程序数据区域的外面, 它允许两个或多个进程共享一给定的存储区,是针对其他通信机制运行效率较低而设计的。使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
    信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
    套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上。
    消息队列(MessageQueue)是一个结构化的排序内存段表,这个队列是进程存放或检索数据的地方,是一个消息的链表,可以被多个进程所共享。
    (2)列举一种死锁发生的场景,并给出解决方案。
    答:最经典的场景就是生产者/消费者,生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。消费者线程从缓冲区中获得物品,然后释放缓冲区。由于生产者/消费者都在操作缓冲区,容易导致死锁的发生。
    可以通过添加锁的保护来对缓冲区进行互斥的访问,保证某一时刻只有一个线程对缓冲区进行操作,当缓冲区满的时候,生产者线程就会挂起,同时通知消费者线程。而缓冲区空的时候,消费者线程就会挂起,同时通知生产者线程。
    (3)列举编写一个TCP的服务器端程序可能需要用到的socket API,如果这些API的调用有先后关系,请按先后关系列出。
    (4)举例说明什么是MVC。
    答:MVC是一个设计模式,它强制性的使应用程序的输入、处理和输出分开。使用MVC应用程序被分成三个核心部件:模型、视图、控制器。它们各自处理自己的任务。
    视图是用户看到并与之交互的界面。对老式的Web应用程序来说,视图就是由HTML元素组成的界面,在新式的Web应用程序中,HTML依旧在视图中扮演着重要的角色,作为视图来讲,它只是作为一种输出数据并允许用户操纵的方式。
    模型表示企业数据和业务规则。在MVC的三个部件中,模型拥有最多的处理任务。由于应用于模型的代码只需写一次就可以被多个视图重用,所以减少了代码的重复性。
    控制器接受用户的输入并调用模型和视图去完成用户的需求。所以当单击Web页面中的超链接和发送HTML表单时,控制器本身不输出任何东西和做任何处理。它只是接收请求并决定调用哪个模型构件去处理请求,然后用确定用哪个视图来显示模型处理返回的数据。


    转载请标明出处,原文地址:http://blog.csdn.net/hackbuteer1/article/details/11473405

  • 相关阅读:
    ognl的应用1
    未命名
    flash钟表的实现
    文本显示输入字数
    HttpServlet session的用法: (2)
    $.fx与$.fn.fx 区别
    javascript 事件冒泡 和 冒泡事件阻止
    (function($){...})(jQuery) 含义
    选择城市插件 jQuery
    offset().left 用法
  • 原文地址:https://www.cnblogs.com/keanuyaoo/p/3310852.html
Copyright © 2020-2023  润新知