题意:
有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色。给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同。
Solution:
很显然的高斯消元。
这里采用了类似SGU275的方法做。
/* 解异或方程组 */ #include <iostream> #include <bitset> #include <cstring> using namespace std; const int N = 209; bitset<N> a[N], mask[N]; int base[N]; int Gauss ( int n ) { for ( int i = 1; i <= n; ++i ) { for ( int j = 1; j <= n; ++j ) { if ( a[i][j] ) { if ( !~base[j] ) { mask[i][i] = 1; base[j] = i; break; } a[i] ^= a[base[j]]; mask[i] ^= mask[base[j]]; } } } } int n, m; int main() { ios::sync_with_stdio ( 0 ); cin >> n; for ( int i = 1, k; i <= n; ++i ) { cin >> k; for ( int j = 1, t; j <= k; ++j ) { cin >> t; a[i][t] = 1; } } memset ( base, -1, sizeof base ); Gauss ( n ); for ( int i = 1, k; i <= n; ++i ) { cin >> k; a[n + 1][i] = k; a[n + 2][i] = k ^ 1; } int k; for ( k = 1; k <= n; ++k ) { if ( a[n + 1][k] == 1 ) { if ( !~base[k] ) { break; } a[n + 1] ^= a[base[k]]; mask[n + 1] ^= mask[base[k]]; } } if ( k > n ) { cout << mask[n + 1].count() << endl; for ( int i = 1; i <= n; ++i ) { if ( mask[n + 1][i] ) cout << i << " "; } } else { for ( k = 1; k <= n; ++k ) { if ( a[n + 2][k] ) { if ( !~base[k] ) { break; } a[n + 2] ^= a[base[k]]; mask[n + 2] ^= mask[base[k]]; } } if ( k > n ) { cout << mask[n + 2].count() << endl; for ( int i = 1; i <= n; ++i ) { if ( mask[n + 2][i] ) cout << i << " "; } } else { cout << -1 << endl; } } }