• linux下Pl353 NAND Flash驱动分析


    linux的NAND Flash驱动位于drivers/mtd/nand子文件夹下:

    nand_base.c-->定义通用的nand flash基本操作函数,如读写page,可自己重写这些函数

    nand_bbt.c-->与坏块管理有关的函数和结构体

    nand_ids.c-->nand_flash_ids[](芯片ID)和nand_manuf_ids[](厂商ID)

    nand_ecc.c-->软件ECC代码,若系统支持硬件ECC。则不用理会这个文件

    pl353_nand.c-->pl353 nand flash控制器的驱动代码

    #include <linux/err.h>
    #include <linux/delay.h>
    #include <linux/interrupt.h>
    #include <linux/io.h>
    #include <linux/ioport.h>
    #include <linux/irq.h>
    #include <linux/memory/pl353-smc.h>
    #include <linux/module.h>
    #include <linux/moduleparam.h>
    #include <linux/mtd/mtd.h>
    #include <linux/mtd/nand.h>
    #include <linux/mtd/nand_ecc.h>
    #include <linux/mtd/partitions.h>
    #include <linux/of_address.h>
    #include <linux/of_device.h>
    #include <linux/of_platform.h>
    #include <linux/platform_device.h>
    #include <linux/slab.h>
    
    #define PL353_NAND_DRIVER_NAME "pl353-nand"
    
    /* NAND flash driver defines */
    #define PL353_NAND_CMD_PHASE	1	/* End command valid in command phase */
    #define PL353_NAND_DATA_PHASE	2	/* End command valid in data phase */
    #define PL353_NAND_ECC_SIZE	512	/* Size of data for ECC operation */
    
    /* Flash memory controller operating parameters */
    
    #define PL353_NAND_ECC_CONFIG	(BIT(4)  |	/* ECC read at end of page */ 
    				 (0 << 5))	/* No Jumping */
    
    /* AXI Address definitions */
    #define START_CMD_SHIFT		3
    #define END_CMD_SHIFT		11
    #define END_CMD_VALID_SHIFT	20
    #define ADDR_CYCLES_SHIFT	21
    #define CLEAR_CS_SHIFT		21
    #define ECC_LAST_SHIFT		10
    #define COMMAND_PHASE		(0 << 19)
    #define DATA_PHASE		BIT(19)
    
    #define PL353_NAND_ECC_LAST	BIT(ECC_LAST_SHIFT)	/* Set ECC_Last */
    #define PL353_NAND_CLEAR_CS	BIT(CLEAR_CS_SHIFT)	/* Clear chip select */
    
    #define ONDIE_ECC_FEATURE_ADDR	0x90
    #define PL353_NAND_ECC_BUSY_TIMEOUT	(1 * HZ)
    #define PL353_NAND_DEV_BUSY_TIMEOUT	(1 * HZ)
    #define PL353_NAND_LAST_TRANSFER_LENGTH	4
    
    /* Inline function for the NAND controller register write */
    static inline void pl353_nand_write32(void __iomem *addr, u32 val)
    {
    	writel_relaxed((val), (addr));
    }
    
    /**
     * struct pl353_nand_command_format - Defines NAND flash command format
     * @start_cmd:		First cycle command (Start command)
     * @end_cmd:		Second cycle command (Last command)
     * @addr_cycles:	Number of address cycles required to send the address
     * @end_cmd_valid:	The second cycle command is valid for cmd or data phase
     */
    struct pl353_nand_command_format {
    	int start_cmd;
    	int end_cmd;
    	u8 addr_cycles;
    	u8 end_cmd_valid;
    };
    
    /**
     * struct pl353_nand_info - Defines the NAND flash driver instance
     * @chip:		NAND chip information structure
     * @mtd:		MTD information structure
     * @parts:		Pointer to the mtd_partition structure
     * @nand_base:		Virtual address of the NAND flash device
     * @end_cmd_pending:	End command is pending
     * @end_cmd:		End command
     */
    struct pl353_nand_info {
    	struct nand_chip chip;
    	struct mtd_info mtd;
    	struct mtd_partition *parts;
    	void __iomem *nand_base;
    	unsigned long end_cmd_pending;
    	unsigned long end_cmd;
    };
    
    /*
     * The NAND flash operations command format
     */
    static const struct pl353_nand_command_format pl353_nand_commands[] = {
    	{NAND_CMD_READ0, NAND_CMD_READSTART, 5, PL353_NAND_CMD_PHASE}, //read data
    	{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, PL353_NAND_CMD_PHASE},  //random Data output
    	{NAND_CMD_READID, NAND_CMD_NONE, 1, NAND_CMD_NONE}, //read ID
    	{NAND_CMD_STATUS, NAND_CMD_NONE, 0, NAND_CMD_NONE}, //read status
    	{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, PL353_NAND_DATA_PHASE}, //page program
    	{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, NAND_CMD_NONE},  //random data input
    	{NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, PL353_NAND_CMD_PHASE}, //erase block
    	{NAND_CMD_RESET, NAND_CMD_NONE, 0, NAND_CMD_NONE},  //reset
    	{NAND_CMD_PARAM, NAND_CMD_NONE, 1, NAND_CMD_NONE},
    	{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE},
    	{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE},
    	{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
    	/* Add all the flash commands supported by the flash device and Linux */
    	/*
    	 * The cache program command is not supported by driver because driver
    	 * cant differentiate between page program and cached page program from
    	 * start command, these commands can be differentiated through end
    	 * command, which doesn't fit in to the driver design. The cache program
    	 * command is not supported by NAND subsystem also, look at 1612 line
    	 * number (in nand_write_page function) of nand_base.c file.
    	 * {NAND_CMD_SEQIN, NAND_CMD_CACHEDPROG, 5, PL353_NAND_YES},
    	 */
    };
    
    /* Define default oob placement schemes for large and small page devices */
    //一般一页中每512字节会相应16字节的OOB空间
    static struct nand_ecclayout nand_oob_16 = { //16表示OOB大小为16B,即页大小为512B时。使用这个ecclayout
    	.eccbytes = 3, //对于pl353每512B数据产生3B的ecc校验值
    	.eccpos = {0, 1, 2}, //ecc校验值在OOB中存放的位置
    	.oobfree = {
    		{.offset = 8, //空暇OOB的起始位置
    		 . length = 8} }
    };
    
    static struct nand_ecclayout nand_oob_64 = { //页大小为2KB时。使用这个ecclayout
    	.eccbytes = 12, //3*4
    	.eccpos = {
    		   52, 53, 54, 55, 56, 57,
    		   58, 59, 60, 61, 62, 63},
    	.oobfree = {
    		{.offset = 2,
    		 .length = 50} }
    };
    //ondie类型的nand flash使用这个ecclayout,不太清楚ondie是什么意思?
    static struct nand_ecclayout ondie_nand_oob_64 = { 
    	.eccbytes = 32,
    
    	.eccpos = {
    		8, 9, 10, 11, 12, 13, 14, 15,
    		24, 25, 26, 27, 28, 29, 30, 31,
    		40, 41, 42, 43, 44, 45, 46, 47,
    		56, 57, 58, 59, 60, 61, 62, 63
    	},
    
    	.oobfree = {
    		{ .offset = 4, .length = 4 },
    		{ .offset = 20, .length = 4 },
    		{ .offset = 36, .length = 4 },
    		{ .offset = 52, .length = 4 }
    	}
    };
    
    /* Generic flash bbt decriptors */
    static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
    static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
    
    static struct nand_bbt_descr bbt_main_descr = {
    	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
    		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
    	.offs = 4,
    	.len = 4,
    	.veroffs = 20,
    	.maxblocks = 4,
    	.pattern = bbt_pattern
    };
    
    static struct nand_bbt_descr bbt_mirror_descr = {
    	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
    		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
    	.offs = 4,
    	.len = 4,
    	.veroffs = 20,
    	.maxblocks = 4,
    	.pattern = mirror_pattern
    };
    
    /**
     * pl353_nand_calculate_hwecc - Calculate Hardware ECC
     * @mtd:	Pointer to the mtd_info structure
     * @data:	Pointer to the page data
     * @ecc_code:	Pointer to the ECC buffer where ECC data needs to be stored
     *
     * This function retrieves the Hardware ECC data from the controller and returns
     * ECC data back to the MTD subsystem.
     *
     * Return:	0 on success or error value on failure
     */
    //从ecc寄存器中获取的ecc值会存放在ecc_code地址空间中
    static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
    				const u8 *data, u8 *ecc_code)
    {
    	u32 ecc_value, ecc_status;
    	u8 ecc_reg, ecc_byte;
    	unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
    
    	/* Wait till the ECC operation is complete or timeout */
    	do {
    		if (pl353_smc_ecc_is_busy())
    			cpu_relax();
    		else
    			break;
    	} while (!time_after_eq(jiffies, timeout));
    
    	if (time_after_eq(jiffies, timeout)) {
    		pr_err("%s timed out
    ", __func__);
    		return -ETIMEDOUT;
    	}
    
    	for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
    		/* Read ECC value for each block */
    		ecc_value = pl353_smc_get_ecc_val(ecc_reg);
    		ecc_status = (ecc_value >> 24) & 0xFF;  //获取最高8bit的状态标记值
    		/* ECC value valid */
    		if (ecc_status & 0x40) {  //推断这个ecc寄存器的值是否是有效的
    			for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
    				/* Copy ECC bytes to MTD buffer */
    				*ecc_code = ecc_value & 0xFF;
    				ecc_value = ecc_value >> 8;
    				ecc_code++;
    			}
    		} else {
    			pr_warn("%s status failed
    ", __func__);
    			return -1;
    		}
    	}
    	return 0;
    }
    
    /**
     * onehot - onehot function
     * @value:	Value to check for onehot
     *
     * This function checks whether a value is onehot or not.
     * onehot is if and only if onebit is set.
     *
     * Return:	1 if it is onehot else 0
     */
    static int onehot(unsigned short value)
    {
    	return (value & (value - 1)) == 0;
    }
    
    /**
     * pl353_nand_correct_data - ECC correction function
     * @mtd:	Pointer to the mtd_info structure
     * @buf:	Pointer to the page data
     * @read_ecc:	Pointer to the ECC value read from spare data area
     * @calc_ecc:	Pointer to the calculated ECC value
     *
     * This function corrects the ECC single bit errors & detects 2-bit errors.
     *
     * Return:	0 if no ECC errors found
     *		1 if single bit error found and corrected.
     *		-1 if multiple ECC errors found.
     */
    static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
    				unsigned char *read_ecc,
    				unsigned char *calc_ecc)
    {
    	unsigned char bit_addr;
    	unsigned int byte_addr;
    	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
    	unsigned short calc_ecc_lower, calc_ecc_upper;
    
    	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
    	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
    
    	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
    	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
    
    	ecc_odd = read_ecc_lower ^ calc_ecc_lower;  //异或:不同为1,同样为0
    	ecc_even = read_ecc_upper ^ calc_ecc_upper;
    
            //假设异或结果都为0,则说明read_ecc和calc_ecc是相等的,没有出错,直接退出
    	if ((ecc_odd == 0) && (ecc_even == 0))  
    		return 0;       /* no error */
    
    	if (ecc_odd == (~ecc_even & 0xfff)) {
    		/* bits [11:3] of error code is byte offset */
    		byte_addr = (ecc_odd >> 3) & 0x1ff;  //第几个字节出错
    		/* bits [2:0] of error code is bit offset */
    		bit_addr = ecc_odd & 0x7;  //第几个bit出错
    		/* Toggling error bit */
    		buf[byte_addr] ^= (1 << bit_addr);  //纠正出错的bit位
    		return 1;
    	}
    
    	if (onehot(ecc_odd | ecc_even) == 1)
    		return 1; /* one error in parity */
    
    	return -1; /* Uncorrectable error */
    }
    
    /**
     * pl353_nand_read_oob - [REPLACABLE] the most common OOB data read function
     * @mtd:	Pointer to the mtd info structure
     * @chip:	Pointer to the NAND chip info structure
     * @page:	Page number to read
     *
     * Return:	Always return zero
     */
    //将page中的OOB数据读入chip->oob_poi中
    static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
    			    int page)
    {
    	unsigned long data_phase_addr;
    	uint8_t *p;
    
            //发送读取OOB数据的命令
    	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
    
    	p = chip->oob_poi;
    	chip->read_buf(mtd, p,
    			(mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
    	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
    
            //在读取最后4个字节数据时。须要将data_phase_addr的clear_cs位置1,
            //通知控制器这是最后的数据读取
    	data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
    	data_phase_addr |= PL353_NAND_CLEAR_CS;
    	chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
    	chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
    
    	return 0;
    }
    
    /**
     * pl353_nand_write_oob - [REPLACABLE] the most common OOB data write function
     * @mtd:	Pointer to the mtd info structure
     * @chip:	Pointer to the NAND chip info structure
     * @page:	Page number to write
     *
     * Return:	Zero on success and EIO on failure
     */
    static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
    			     int page)
    {
    	int status = 0;
    	const uint8_t *buf = chip->oob_poi;
    	unsigned long data_phase_addr;
    
            //发送写命令
    	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
    
    	chip->write_buf(mtd, buf,
    			(mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
    	buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
    
            //在写最后4B数据时,须要设置end command valid。这样在写全然部的数据后,
            //写命令的第2个命令NAND_CMD_PAGEPROG才会有效,将数据真正地写入相应的OOB中。
    	data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
    	data_phase_addr |= PL353_NAND_CLEAR_CS; //设置clear cs位为1
    	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);  //设置end command valid
    	chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
    	chip->write_buf(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH);
    
    	/* Send command to program the OOB data */
            //这条代码不须要,由于NAND_CMD_PAGEPROG已经在data_phase_addr中了
    	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
    	status = chip->waitfunc(mtd, chip);
    
    	return status & NAND_STATUS_FAIL ?

    -EIO : 0; } /** * pl353_nand_read_page_raw - [Intern] read raw page data without ecc * @mtd: Pointer to the mtd info structure * @chip: Pointer to the NAND chip info structure * @buf: Pointer to the data buffer * @oob_required: Caller requires OOB data read to chip->oob_poi * @page: Page number to read * * Return: Always return zero */ //将一个页中的数据读入buf中,将OOB数据读入chip->oob_poi中 static int pl353_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { unsigned long data_phase_addr; uint8_t *p; chip->read_buf(mtd, buf, mtd->writesize); p = chip->oob_poi; chip->read_buf(mtd, p, (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; data_phase_addr |= PL353_NAND_CLEAR_CS; chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); return 0; } /** * pl353_nand_write_page_raw - [Intern] raw page write function * @mtd: Pointer to the mtd info structure * @chip: Pointer to the NAND chip info structure * @buf: Pointer to the data buffer * @oob_required: Caller requires OOB data read to chip->oob_poi * * Return: Always return zero */ //将buf中一页的数据写入页中。并将chip->oob_poi中的数据写入oob区域 static int pl353_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { unsigned long data_phase_addr; uint8_t *p; chip->write_buf(mtd, buf, mtd->writesize); p = chip->oob_poi; chip->write_buf(mtd, p, (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; data_phase_addr |= PL353_NAND_CLEAR_CS; data_phase_addr |= (1 << END_CMD_VALID_SHIFT); chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; chip->write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); return 0; } /** * nand_write_page_hwecc - Hardware ECC based page write function * @mtd: Pointer to the mtd info structure * @chip: Pointer to the NAND chip info structure * @buf: Pointer to the data buffer * @oob_required: Caller requires OOB data read to chip->oob_poi * * This functions writes data and hardware generated ECC values in to the page. * * Return: Always return zero */ //将buf中一页的数据写入页中,并将硬件生成的ecc值写入oob区域 static int pl353_nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { int i, eccsize = chip->ecc.size;//为512,即一次ecc计算能处理多少字节数据 int eccsteps = chip->ecc.steps; //一页数据须要多少次ecc计算,如:2KB页大小,要4次ecc计算 uint8_t *ecc_calc = chip->buffers->ecccalc; const uint8_t *p = buf; //要写入页的数据 uint32_t *eccpos = chip->ecc.layout->eccpos; //ecc在OOB中存放的位置 unsigned long data_phase_addr; uint8_t *oob_ptr; //每次写512B数据, for ( ; (eccsteps - 1); eccsteps--) { chip->write_buf(mtd, p, eccsize); p += eccsize; } //在写最后一个512B的最后4B数据是,须要设置ECC_LAST来 //通知硬件ecc模块当前是最后一个訪问 chip->write_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); /* Set ECC Last bit to 1 */ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; data_phase_addr |= PL353_NAND_ECC_LAST; chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; chip->write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); /* Wait for ECC to be calculated and read the error values */ p = buf; chip->ecc.calculate(mtd, p, &ecc_calc[0]);//获取刚刚硬件计算的ecc值 for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]); /* Clear ECC last bit */ data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; data_phase_addr &= ~PL353_NAND_ECC_LAST; chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; /* Write the spare area with ECC bytes *///写ecc到OOB区域 oob_ptr = chip->oob_poi; chip->write_buf(mtd, oob_ptr, (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; data_phase_addr |= PL353_NAND_CLEAR_CS; data_phase_addr |= (1 << END_CMD_VALID_SHIFT); chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); chip->write_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); return 0; } /** * pl353_nand_write_page_swecc - [REPLACABLE] software ecc based page write function * @mtd: Pointer to the mtd info structure * @chip: Pointer to the NAND chip info structure * @buf: Pointer to the data buffer * @oob_required: Caller requires OOB data read to chip->oob_poi * * Return: Always return zero */ static int pl353_nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *ecc_calc = chip->buffers->ecccalc; const uint8_t *p = buf; uint32_t *eccpos = chip->ecc.layout->eccpos; /* Software ecc calculation */ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; chip->ecc.write_page_raw(mtd, chip, buf, 1); return 0; } /** * pl353_nand_read_page_hwecc - Hardware ECC based page read function * @mtd: Pointer to the mtd info structure * @chip: Pointer to the NAND chip info structure * @buf: Pointer to the buffer to store read data * @oob_required: Caller requires OOB data read to chip->oob_poi * @page: Page number to read * * This functions reads data and checks the data integrity by comparing hardware * generated ECC values and read ECC values from spare area. * * Return: 0 always and updates ECC operation status in to MTD structure */ static int pl353_nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int i, stat, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; unsigned long data_phase_addr; uint8_t *oob_ptr; for ( ; (eccsteps - 1); eccsteps--) { chip->read_buf(mtd, p, eccsize); p += eccsize; } chip->read_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); /* Set ECC Last bit to 1 */ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; data_phase_addr |= PL353_NAND_ECC_LAST; chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); /* Read the calculated ECC value */ p = buf; chip->ecc.calculate(mtd, p, &ecc_calc[0]); /* Clear ECC last bit */ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; data_phase_addr &= ~PL353_NAND_ECC_LAST; chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; /* Read the stored ECC value */ oob_ptr = chip->oob_poi; chip->read_buf(mtd, oob_ptr, (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); /* de-assert chip select */ data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; data_phase_addr |= PL353_NAND_CLEAR_CS; chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); chip->read_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = ~(chip->oob_poi[eccpos[i]]); eccsteps = chip->ecc.steps; p = buf; /* Check ECC error for all blocks and correct if it is correctable */ //使用ecc对读出来的数据进行检查,假设发现错误就尝试纠正 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) //假设返回值为-1。表示发生了不可纠正的错误 mtd->ecc_stats.failed++; else //返回0或者1。表示没有错误或发生了可纠正的错误 mtd->ecc_stats.corrected += stat; } return 0; } /** * pl353_nand_read_page_swecc - [REPLACABLE] software ecc based page read function * @mtd: Pointer to the mtd info structure * @chip: Pointer to the NAND chip info structure * @buf: Pointer to the buffer to store read data * @oob_required: Caller requires OOB data read to chip->oob_poi * @page: Page number to read * * Return: Always return zero */ static int pl353_nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; chip->ecc.read_page_raw(mtd, chip, buf, page, 1); for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } return 0; } /** * pl353_nand_select_chip - Select the flash device * @mtd: Pointer to the mtd info structure * @chip: Pointer to the NAND chip info structure * * This function is empty as the NAND controller handles chip select line * internally based on the chip address passed in command and data phase. */ static void pl353_nand_select_chip(struct mtd_info *mtd, int chip) { return; } /** * pl353_nand_cmd_function - Send command to NAND device * @mtd: Pointer to the mtd_info structure * @command: The command to be sent to the flash device * @column: The column address for this command, -1 if none * @page_addr: The page address for this command, -1 if none */ static void pl353_nand_cmd_function(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { struct nand_chip *chip = mtd->priv; const struct pl353_nand_command_format *curr_cmd = NULL; struct pl353_nand_info *xnand = container_of(mtd, struct pl353_nand_info, mtd); void __iomem *cmd_addr; unsigned long cmd_data = 0, end_cmd_valid = 0; unsigned long cmd_phase_addr, data_phase_addr, end_cmd, i; unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; if (xnand->end_cmd_pending) {//假设end_cmd_pending为1,表示前一次调用这个函数的命令有end command /* * Check for end command if this command request is same as the * pending command then return */ if (xnand->end_cmd == command) { xnand->end_cmd = 0; xnand->end_cmd_pending = 0; return; } } /* Emulate NAND_CMD_READOOB for large page device */ if ((mtd->writesize > PL353_NAND_ECC_SIZE) && (command == NAND_CMD_READOOB)) { column += mtd->writesize; command = NAND_CMD_READ0; } /* Get the command format */ for (i = 0; (pl353_nand_commands[i].start_cmd != NAND_CMD_NONE || pl353_nand_commands[i].end_cmd != NAND_CMD_NONE); i++) if (command == pl353_nand_commands[i].start_cmd) curr_cmd = &pl353_nand_commands[i]; if (curr_cmd == NULL)//假设为空,表示当前命令是无效的,退出 return; /* Clear interrupt */ pl353_smc_clr_nand_int(); /* Get the command phase address */ if (curr_cmd->end_cmd_valid == PL353_NAND_CMD_PHASE) end_cmd_valid = 1; if (curr_cmd->end_cmd == NAND_CMD_NONE) end_cmd = 0x0; else end_cmd = curr_cmd->end_cmd; //cmd_phase_addr和data_phase_addr的意义须要看pl353数据手冊 //在pl353中命令參数是包括在命令阶段地址和数据阶段地址中的 cmd_phase_addr = (unsigned long __force)xnand->nand_base | (curr_cmd->addr_cycles << ADDR_CYCLES_SHIFT) | //地址周期的个数 (end_cmd_valid << END_CMD_VALID_SHIFT) | (COMMAND_PHASE) | //为0,表示这是命令阶段地址 (end_cmd << END_CMD_SHIFT) | (curr_cmd->start_cmd << START_CMD_SHIFT); cmd_addr = (void __iomem * __force)cmd_phase_addr; /* Get the data phase address */ end_cmd_valid = 0; data_phase_addr = (unsigned long __force)xnand->nand_base | (0x0 << CLEAR_CS_SHIFT) | (end_cmd_valid << END_CMD_VALID_SHIFT) | (DATA_PHASE) | //为1。表示这个数据阶段地址 (end_cmd << END_CMD_SHIFT) | (0x0 << ECC_LAST_SHIFT); chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; chip->IO_ADDR_W = chip->IO_ADDR_R; /* Command phase AXI write */ /* Read & Write */ //依据column和page_addr等參数,生成要发送的地址cmd_data if (column != -1 && page_addr != -1) { /* Adjust columns for 16 bit bus width */ if (chip->options & NAND_BUSWIDTH_16) column >>= 1; cmd_data = column; if (mtd->writesize > PL353_NAND_ECC_SIZE) { cmd_data |= page_addr << 16; /* Another address cycle for devices > 128MiB */ if (chip->chipsize > (128 << 20)) { pl353_nand_write32(cmd_addr, cmd_data);//假设是大页,在这里先发送前4个周期的地址 cmd_data = (page_addr >> 16); } } else { cmd_data |= page_addr << 8; } } else if (page_addr != -1) { /* Erase */ cmd_data = page_addr; } else if (column != -1) { /* * Change read/write column, read id etc * Adjust columns for 16 bit bus width */ if ((chip->options & NAND_BUSWIDTH_16) && ((command == NAND_CMD_READ0) || (command == NAND_CMD_SEQIN) || (command == NAND_CMD_RNDOUT) || (command == NAND_CMD_RNDIN))) column >>= 1; cmd_data = column; } //发送小页的4个周期地址或者大页的第5个周期地址 pl353_nand_write32(cmd_addr, cmd_data); //假设当前命令有end command,则将xnand->end_cmd_pending置1 if (curr_cmd->end_cmd_valid) { xnand->end_cmd = curr_cmd->end_cmd; xnand->end_cmd_pending = 1; } //延时。等待命令完毕 ndelay(100); if ((command == NAND_CMD_READ0) || (command == NAND_CMD_RESET) || (command == NAND_CMD_PARAM) || (command == NAND_CMD_GET_FEATURES)) { /* Wait till the device is ready or timeout */ do { if (chip->dev_ready(mtd)) break; else cpu_relax(); } while (!time_after_eq(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) pr_err("%s timed out ", __func__); return; } } /** * pl353_nand_read_buf - read chip data into buffer * @mtd: Pointer to the mtd info structure * @buf: Pointer to the buffer to store read data * @len: Number of bytes to read */ static void pl353_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; unsigned long *ptr = (unsigned long *)buf; len >>= 2; for (i = 0; i < len; i++) ptr[i] = readl(chip->IO_ADDR_R);//通过IO_ADDR_R地址读取数据 } /** * pl353_nand_write_buf - write buffer to chip * @mtd: Pointer to the mtd info structure * @buf: Pointer to the buffer to store read data * @len: Number of bytes to write */ static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; unsigned long *ptr = (unsigned long *)buf; len >>= 2; for (i = 0; i < len; i++) writel(ptr[i], chip->IO_ADDR_W); } /** * pl353_nand_device_ready - Check device ready/busy line * @mtd: Pointer to the mtd_info structure * * Return: 0 on busy or 1 on ready state */ //查询设备是否处于空暇状态 static int pl353_nand_device_ready(struct mtd_info *mtd) { if (pl353_smc_get_nand_int_status_raw()) { pl353_smc_clr_nand_int(); return 1; } return 0; } /** * pl353_nand_detect_ondie_ecc - Get the flash ondie ecc state * @mtd: Pointer to the mtd_info structure * * This function enables the ondie ecc for the Micron ondie ecc capable devices * * Return: 1 on detect, 0 if fail to detect */ static int pl353_nand_detect_ondie_ecc(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; u8 maf_id, dev_id, i, get_feature; u8 set_feature[4] = { 0x08, 0x00, 0x00, 0x00 }; /* Check if On-Die ECC flash */ nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); //发送ReadID的命令:0x90去取得nand 芯片的ID信息 nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ maf_id = readb(nand_chip->IO_ADDR_R);//第一个字节是厂商ID dev_id = readb(nand_chip->IO_ADDR_R);//第二个字节是芯片ID if ((maf_id == NAND_MFR_MICRON) && ((dev_id == 0xf1) || (dev_id == 0xa1) || (dev_id == 0xb1) || (dev_id == 0xaa) || (dev_id == 0xba) || (dev_id == 0xda) || (dev_id == 0xca) || (dev_id == 0xac) || (dev_id == 0xbc) || (dev_id == 0xdc) || (dev_id == 0xcc) || (dev_id == 0xa3) || (dev_id == 0xb3) || (dev_id == 0xd3) || (dev_id == 0xc3))) { nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, ONDIE_ECC_FEATURE_ADDR, -1); get_feature = readb(nand_chip->IO_ADDR_R); if (get_feature & 0x08) { return 1; } else { nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, ONDIE_ECC_FEATURE_ADDR, -1); for (i = 0; i < 4; i++) writeb(set_feature[i], nand_chip->IO_ADDR_W); ndelay(1000); nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, ONDIE_ECC_FEATURE_ADDR, -1); get_feature = readb(nand_chip->IO_ADDR_R); if (get_feature & 0x08) return 1; } } return 0; } /** * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode * @mtd: Pointer to the mtd_info structure * @ondie_ecc_state: ondie ecc status * * This function initializes the ecc block and functional pointers as per the * ecc mode */ static void pl353_nand_ecc_init(struct mtd_info *mtd, int ondie_ecc_state) { struct nand_chip *nand_chip = mtd->priv; nand_chip->ecc.mode = NAND_ECC_HW;//使用硬件ecc nand_chip->ecc.read_oob = pl353_nand_read_oob; nand_chip->ecc.read_page_raw = pl353_nand_read_page_raw; nand_chip->ecc.strength = 1; nand_chip->ecc.write_oob = pl353_nand_write_oob; nand_chip->ecc.write_page_raw = pl353_nand_write_page_raw; if (ondie_ecc_state) { /* bypass the controller ECC block */ pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS); /* * The software ECC routines won't work with the * SMC controller */ nand_chip->ecc.bytes = 0; nand_chip->ecc.layout = &ondie_nand_oob_64; nand_chip->ecc.read_page = pl353_nand_read_page_raw; nand_chip->ecc.write_page = pl353_nand_write_page_raw; nand_chip->ecc.size = mtd->writesize; /* * On-Die ECC spare bytes offset 8 is used for ECC codes * Use the BBT pattern descriptors */ nand_chip->bbt_td = &bbt_main_descr; nand_chip->bbt_md = &bbt_mirror_descr; } else { /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ nand_chip->ecc.bytes = 3; nand_chip->ecc.calculate = pl353_nand_calculate_hwecc; nand_chip->ecc.correct = pl353_nand_correct_data; nand_chip->ecc.hwctl = NULL; nand_chip->ecc.read_page = pl353_nand_read_page_hwecc; nand_chip->ecc.size = PL353_NAND_ECC_SIZE; nand_chip->ecc.write_page = pl353_nand_write_page_hwecc; pl353_smc_set_ecc_pg_size(mtd->writesize); switch (mtd->writesize) { case 512: case 1024: case 2048: pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB); break; default: /* * The software ECC routines won't work with the * SMC controller */ nand_chip->ecc.calculate = nand_calculate_ecc; nand_chip->ecc.correct = nand_correct_data; nand_chip->ecc.read_page = pl353_nand_read_page_swecc; nand_chip->ecc.write_page = pl353_nand_write_page_swecc; nand_chip->ecc.size = 256; break; } //假设这里没有设置layout的值。将会在nand_scan_tail中再次依据oobsize的 //值来设置一个默认的layout if (mtd->oobsize == 16) //一般页中每512字节会分配16字节的OOB空间 nand_chip->ecc.layout = &nand_oob_16; else if (mtd->oobsize == 64) nand_chip->ecc.layout = &nand_oob_64; } } /** * pl353_nand_probe - Probe method for the NAND driver * @pdev: Pointer to the platform_device structure * * This function initializes the driver data structures and the hardware. * * Return: 0 on success or error value on failure */ static int pl353_nand_probe(struct platform_device *pdev) { struct pl353_nand_info *xnand; struct mtd_info *mtd; struct nand_chip *nand_chip; struct resource *res; struct mtd_part_parser_data ppdata; int ondie_ecc_state; xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL); if (!xnand) return -ENOMEM; /* Map physical address of NAND flash */ //映射nand flash的基地值,这个值在pl353数据手冊中设定 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); xnand->nand_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(xnand->nand_base)) return PTR_ERR(xnand->nand_base); /* Link the private data with the MTD structure */ mtd = &xnand->mtd; nand_chip = &xnand->chip; nand_chip->priv = xnand; mtd->priv = nand_chip; mtd->owner = THIS_MODULE; mtd->name = PL353_NAND_DRIVER_NAME; /* Set address of NAND IO lines */ nand_chip->IO_ADDR_R = xnand->nand_base; nand_chip->IO_ADDR_W = xnand->nand_base; //假设nand_chip的一些函数没有在这里实现,则会在nand_base.c文件的 //nand_set_defaults函数中将他们设置为nand_base.c中通用的函数 /* Set the driver entry points for MTD */ nand_chip->cmdfunc = pl353_nand_cmd_function; nand_chip->dev_ready = pl353_nand_device_ready; nand_chip->select_chip = pl353_nand_select_chip; /* If we don't set this delay driver sets 20us by default */ nand_chip->chip_delay = 30; /* Buffer read/write routines */ nand_chip->read_buf = pl353_nand_read_buf; nand_chip->write_buf = pl353_nand_write_buf; /* Set the device option and flash width */ nand_chip->options = NAND_BUSWIDTH_AUTO;//依据硬件,自己主动设置nand总线宽度 nand_chip->bbt_options = NAND_BBT_USE_FLASH;//bbt存放在nand中 platform_set_drvdata(pdev, xnand); ondie_ecc_state = pl353_nand_detect_ondie_ecc(mtd); /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, 1, NULL)) { dev_err(&pdev->dev, "nand_scan_ident for NAND failed "); return -ENXIO; } pl353_nand_ecc_init(mtd, ondie_ecc_state); if (nand_chip->options & NAND_BUSWIDTH_16) pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); /* second phase scan */ //在nand_scan_tail函数功能:对nand_chip->ecc和mtd余下部分赋值,建立坏块表等 if (nand_scan_tail(mtd)) { dev_err(&pdev->dev, "nand_scan_tail for NAND failed "); return -ENXIO; } ppdata.of_node = pdev->dev.of_node; mtd_device_parse_register(&xnand->mtd, NULL, &ppdata, NULL, 0); return 0; } /** * pl353_nand_remove - Remove method for the NAND driver * @pdev: Pointer to the platform_device structure * * This function is called if the driver module is being unloaded. It frees all * resources allocated to the device. * * Return: 0 on success or error value on failure */ static int pl353_nand_remove(struct platform_device *pdev) { struct pl353_nand_info *xnand = platform_get_drvdata(pdev); /* Release resources, unregister device */ nand_release(&xnand->mtd); /* kfree(NULL) is safe */ kfree(xnand->parts); return 0; } /* Match table for device tree binding */ static const struct of_device_id pl353_nand_of_match[] = { { .compatible = "arm,pl353-nand-r2p1" }, {}, }; MODULE_DEVICE_TABLE(of, pl353_nand_of_match); /* * pl353_nand_driver - This structure defines the NAND subsystem platform driver */ static struct platform_driver pl353_nand_driver = { .probe = pl353_nand_probe, .remove = pl353_nand_remove, .driver = { .name = PL353_NAND_DRIVER_NAME, .owner = THIS_MODULE, .of_match_table = pl353_nand_of_match, }, }; module_platform_driver(pl353_nand_driver); MODULE_AUTHOR("Xilinx, Inc."); MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME); MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); MODULE_LICENSE("GPL"); //在nand_scan_ident函数中会调用nand_get_flash_type函数。这个函数非常重要。主要是获取 //nand flash一些基本參数。如页大小,块大小等。 /* * Get the flash and manufacturer id and lookup if the type is supported. */ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, int *maf_id, int *dev_id, struct nand_flash_dev *type) { int busw;//硬件的总线宽度 int i, maf_idx; u8 id_data[8]; /* Select the device */ chip->select_chip(mtd, 0);//选中芯片,才干对其操作 /* * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) * after power-up. */ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Send the command for reading device ID */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ *maf_id = chip->read_byte(mtd); *dev_id = chip->read_byte(mtd); /* * Try again to make sure, as some systems the bus-hold or other * interface concerns can cause random data which looks like a * possibly credible NAND flash to appear. If the two results do * not match, ignore the device completely. */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); //获取整个ID数据,总共同拥有8字节 /* Read entire ID string */ for (i = 0; i < 8; i++) id_data[i] = chip->read_byte(mtd); //推断第二次读取的ID是否与第一次读取的一样,不一样则说明设备有问题 if (id_data[0] != *maf_id || id_data[1] != *dev_id) { pr_info("second ID read did not match %02x,%02x against %02x,%02x ", *maf_id, *dev_id, id_data[0], id_data[1]); return ERR_PTR(-ENODEV); } if (!type) type = nand_flash_ids; for (; type->name != NULL; type++) { if (is_full_id_nand(type)) { if (find_full_id_nand(mtd, chip, type, id_data, &busw)) goto ident_done; } else if (*dev_id == type->dev_id) {//找到这个芯片ID相应的nand_flash_dev break; } } chip->onfi_version = 0; if (!type->name || !type->pagesize) { /* Check if the chip is ONFI compliant */ if (nand_flash_detect_onfi(mtd, chip, &busw)) goto ident_done; /* Check if the chip is JEDEC compliant */ if (nand_flash_detect_jedec(mtd, chip, &busw)) goto ident_done; } //name为空,表示没有在nand_flash_ids数组中找到此芯片ID相应的设备 if (!type->name) return ERR_PTR(-ENODEV); if (!mtd->name) mtd->name = type->name; chip->chipsize = (uint64_t)type->chipsize << 20; if (!type->pagesize && chip->init_size) { /* Set the pagesize, oobsize, erasesize by the driver */ busw = chip->init_size(mtd, chip, id_data); } else if (!type->pagesize) { /* Decode parameters from extended ID */ nand_decode_ext_id(mtd, chip, id_data, &busw); } else { //假设type->pagesize不为0。则使用type的參数来设置 //mtd中芯片writesize,oobsize,erasesize的值 nand_decode_id(mtd, chip, type, id_data, &busw); } /* Get chip options */ chip->options |= type->options; /* * Check if chip is not a Samsung device. Do not clear the * options for chips which do not have an extended id. */ if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; ident_done: /* Try to identify manufacturer */ for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) { if (nand_manuf_ids[maf_idx].id == *maf_id) break; } if (chip->options & NAND_BUSWIDTH_AUTO) {//依据硬件。自己主动设在总线宽度 WARN_ON(chip->options & NAND_BUSWIDTH_16); chip->options |= busw; nand_set_defaults(chip, busw); } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { //否则检測驱动中关于位宽的定义是否和硬件一致 /* * Check, if buswidth is correct. Hardware drivers should set * chip correct! */ pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x ", *maf_id, *dev_id); pr_info("%s %s ", nand_manuf_ids[maf_idx].name, mtd->name); pr_warn("bus width %d instead %d bit ", (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8); return ERR_PTR(-EINVAL); } nand_decode_bbm_options(mtd, chip, id_data); /* Calculate the address shift from the page size */ chip->page_shift = ffs(mtd->writesize) - 1; /* Convert chipsize to number of pages per chip -1 */ chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; chip->bbt_erase_shift = chip->phys_erase_shift = ffs(mtd->erasesize) - 1; if (chip->chipsize & 0xffffffff)//推断是否超过4GB,预计是ffs函数最多支持32位 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; else { chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); chip->chip_shift += 32 - 1; } chip->badblockbits = 8; chip->erase = single_erase; /* Do not replace user supplied command function! */ if (mtd->writesize > 512 && chip->cmdfunc == nand_command) chip->cmdfunc = nand_command_lp;//大页使用的默认命令函数 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x ", *maf_id, *dev_id); if (chip->onfi_version) pr_info("%s %s ", nand_manuf_ids[maf_idx].name, chip->onfi_params.model); else if (chip->jedec_version) pr_info("%s %s ", nand_manuf_ids[maf_idx].name, chip->jedec_params.model); else pr_info("%s %s ", nand_manuf_ids[maf_idx].name, type->name); pr_info("%dMiB, %s, page size: %d, OOB size: %d ", (int)(chip->chipsize >> 20), nand_is_slc(chip) ?

    "SLC" : "MLC", mtd->writesize, mtd->oobsize); return type; }







  • 相关阅读:
    python的不可变对象与可变对象及其妙用与坑
    WAAPI+Python使用中的相关问题和学习记录
    开发工具使用
    面试要点5
    面试要点4
    HTTP状态码——详解
    ElasticSearch使用curl导数据报400可能原因
    elasticsearch的安装、部署
    js二级联动
    aspose.words for java操作文档doc,设置一级二级三级标题以及段落表格等详情
  • 原文地址:https://www.cnblogs.com/jzssuanfa/p/7347474.html
Copyright © 2020-2023  润新知