# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 获取mnist数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 注册默认session 后面操作无需指定session 不同sesson之间的数据是独立的
sess = tf.InteractiveSession()
# 构造参数W函数 给一些偏差0.1防止死亡节点
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# 构造偏差b函数
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# x是输入,W为卷积参数 如[5,5,1,30] 前两个表示卷积核的尺寸
# 第三个表示通道channel 第四个表示提取多少类特征
# strides 表示卷积模板移动的步长都是 1代表不遗漏的划过图片每一个点
# padding 表示边界处理方式这里的SAME代表给边界加上padding让输出和输入保持相同尺寸
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# ksize 使用2x2最大池化即将一个2x2像素块变为1x1 最大池化保持像素最高的点
# stride也横竖两个方向为2歩长,如果步长为1 得到尺寸不变的图片
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 定义张量流输入格式
# reshape变换张量shape 2维张量变4维 [None, 784] to [-1,28,28,1]
# -1表示样本数量不固定 28 28为尺寸 1为通道
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 第一次卷积池化 卷积层用ReLU激活函数
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 =