• codeforces.com/contest/844/problem/C


    C. Sorting by Subsequences

    time limit per test

    1 second

    memory limit per test

    256 megabytes
     

    You are given a sequence a1, a2, ..., an consisting of different integers. It is required to split this sequence into the maximum number of subsequences such that after sorting integers in each of them in increasing order, the total sequence also will be sorted in increasing order.

    Sorting integers in a subsequence is a process such that the numbers included in a subsequence are ordered in increasing order, and the numbers which are not included in a subsequence don't change their places.

    Every element of the sequence must appear in exactly one subsequence.

    Input

    The first line of input data contains integer n (1 ≤ n ≤ 105) — the length of the sequence.

    The second line of input data contains n different integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the elements of the sequence. It is guaranteed that all elements of the sequence are distinct.

    Output

    In the first line print the maximum number of subsequences k, which the original sequence can be split into while fulfilling the requirements.

    In the next k lines print the description of subsequences in the following format: the number of elements in subsequence ci (0 < ci ≤ n), then ci integers l1, l2, ..., lci (1 ≤ lj ≤ n) — indices of these elements in the original sequence.

    Indices could be printed in any order. Every index from 1 to n must appear in output exactly once.

    If there are several possible answers, print any of them.

    Solution

    题意:

    给出长度为N的一个序列,我们的任务是将其分割成尽可能多的子序列,使得每个子序列自身排序之后,最终的序列是一个递增的序列。

    保证每个数只会出现一次

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 100000;
     4 struct node{int id,value;}a[maxn + 99];
     5 inline bool cmp(node a,node b){return a.value < b.value;}
     6 int    to[maxn + 99],n, cnt = 0,vis[maxn + 99];
     7 vector<int> q[maxn + 99];
     8 inline void dfs(int x,int idx){
     9     vis[x] = 1; q[idx].push_back(x);
    10     if (!vis[to[x]]) dfs(to[x],idx);
    11 }
    12 int main(){
    13     scanf("%d",&n);
    14     for (int i = 1 ; i <= n ; ++i) scanf("%d",&a[i].value),a[i].id = i;
    15     sort(a + 1 , a + 1 + n, cmp);
    16     for (int i = 1 ; i <= n ; ++i) to[a[i].id] = i;
    17     memset(vis,0,sizeof(vis));
    18     for (int i = 1 ; i <= n ; ++i) if (vis[i] == 0)    dfs(i,++cnt);
    19     cout<<cnt<<endl;
    20     for (int i = 1 ; i <= cnt ; ++i){
    21         cout<<q[i].size()<<" ";
    22         for (int j = 0 ; j < q[i].size() ; ++j) printf("%d ",q[i][j]);
    23         cout<<endl;
    24     }    
    25     return 0;
    26 }
    View Code

    题解:这是一道有趣的题,似乎只排一排序找一找环就过了....

     
  • 相关阅读:
    LINNX联网配置文件
    linux文件系统配置文件
    linux引导和登录/注销配置文件
    LINUX访问文件配置
    LINUX配置文件介绍
    tcpdump的表达式介绍
    tcpdump命令介绍
    DNS客户端配置文件/etc/resolv.conf
    tcpdump概述
    LINUX普通猫的拔号工具介绍
  • 原文地址:https://www.cnblogs.com/juruohx/p/7603763.html
Copyright © 2020-2023  润新知