• 高并发流量控制


      以前没关注过,这里只学的是单机的处理方式。

    1.什么是大流量

      大流量,我们很可能会冒出:TPS(每秒事务量),QPS(每秒请求量),1W+,5W+,10W+,100W+...。

      其实并没有一个绝对的数字,如果这个量造成了系统的压力,影响了系统的性能,那么这个量就可以称之为大流量了。

    2.应对大流量常用方式

      缓存:说白了,就是让数据尽早进入缓存,离程序近一点,不要大量频繁的访问DB。

      降级:如果不是核心链路,那么就把这个服务降级掉。打个比喻,现在的APP都讲究千人千面,拿到数据后,做个性化排序展示,如果在大流量下,这个排序就可以降级掉!

      限流:想法很直接,就是想在一定时间内把请求限制在一定范围内,保证系统不被冲垮,同时尽可能提升系统的吞吐量。

        注意到,有些时候,缓存和降级是解决不了问题的,比如,电商的双十一,用户的购买,下单等行为,是涉及到大量写操作,而且是核心链路,无法降级的,这个时候,限流就比较重要了。

    3.限流

      限流的常用处理手段有:计数器、滑动窗口、漏桶、令牌。

    4.计数器

      计数器是一种比较简单的限流算法,用途比较广泛,在接口层面,很多地方使用这种方式限流。在一段时间内,进行计数,与阀值进行比较,到了时间临界点,将计数器清0。

      这段程序是拷贝的,我感觉这段的意思是,如果在这段时间内超过了一定的值,就开始使用限流的逻辑处理(这个地方应该才是重点,计数器是一个壳子)。

      

    5.活动窗口

      由于计数器存在临界点缺陷,后来出现了滑动窗口算法来解决。

      滑动窗口的意思是说把固定时间片,进行划分,并且随着时间的流逝,进行移动,这样就巧妙的避开了计数器的临界点问题。也就是说这些固定数量的可以移动的格子,将会进行计数判断阀值,因此格子的数量影响着滑动窗口算法的精度。

      

      我感觉应该像通信中的滑动窗口。

    6.漏桶

      虽然滑动窗口有效避免了时间临界点的问题,但是依然有时间片的概念,而漏桶算法在这方面比滑动窗口而言,更加先进。

      有一个固定的桶,进水的速率是不确定的,但是出水的速率是恒定的,当水满的时候是会溢出的。

      

    7.令牌桶

      注意到,漏桶的出水速度是恒定的,那么意味着如果瞬时大流量的话,将有大部分请求被丢弃掉(也就是所谓的溢出)。为了解决这个问题,令牌桶进行了算法改进。

      

      生成令牌的速度是恒定的,而请求去拿令牌是没有速度限制的。这意味,面对瞬时大流量,该算法可以在短时间内请求拿到大量令牌,而且拿令牌的过程并不是消耗很大的事情。

      

      

  • 相关阅读:
    Python3报错处理:UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1: ordinal not in range(128)
    Python/Shell/MySQL时间获取与格式转换
    MySQL客户端不需要commit代码需要commit原因分析
    Python3多线程及线程池实现教程
    人工智能、机器学习及深度学习的区别与联系
    GitHub基本使用操作
    Python3 UNIX domain sockets使用代码实现
    Linux core dump文件生成与使用
    Linux setuid使用
    Shell脚本调试操作
  • 原文地址:https://www.cnblogs.com/juncaoit/p/9388205.html
Copyright © 2020-2023  润新知