• 图像语义分割代码实现(1)


    谷歌最新语义图像分割模型 DeepLab-v3+ 现已开源 https://www.oschina.net/news/94257/google-open-sources-pixel-2-portrait-code

    https://blog.csdn.net/zizi7/article/details/77163969

    针对《图像语义分割(1)- FCN》介绍的FCN算法,以官方的代码为基础,在 SIFT-Flow 数据集上做训练和测试。

    介绍了如何制作自己的训练数据


    数据准备

    参考文章《FCN网络的训练——以SIFT-Flow 数据集为例》

    1) 首先 clone 官方工程

    git clone https://github.com/shelhamer/fcn.berkeleyvision.org.git
    • 1

    工程是基于 CAFFE 的,所以也需要提前安装好

    2)下载数据集及模型 
    - 到这里下载 SIFT-Flow 数据集,解压缩到 fcn/data/sift-flow/ 下 
    - 到这里下载 VGG-16 预训练模型,移动到 fcn/ilsvrc-nets/ 下 
    - 参考文章《 FCN模型训练中遇到的困难》,到这里下载 VGG_ILSVRC_16_layers_deploy.prototxt 
     或者直接 copy 以下内容:

    name: "VGG_ILSVRC_16_layers"
    input: "data"
    input_dim: 10
    input_dim: 3
    input_dim: 224
    input_dim: 224
    layers {
      bottom: "data"
      top: "conv1_1"
      name: "conv1_1"
      type: CONVOLUTION
      convolution_param {
        num_output: 64
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv1_1"
      top: "conv1_1"
      name: "relu1_1"
      type: RELU
    }
    layers {
      bottom: "conv1_1"
      top: "conv1_2"
      name: "conv1_2"
      type: CONVOLUTION
      convolution_param {
        num_output: 64
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv1_2"
      top: "conv1_2"
      name: "relu1_2"
      type: RELU
    }
    layers {
      bottom: "conv1_2"
      top: "pool1"
      name: "pool1"
      type: POOLING
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layers {
      bottom: "pool1"
      top: "conv2_1"
      name: "conv2_1"
      type: CONVOLUTION
      convolution_param {
        num_output: 128
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv2_1"
      top: "conv2_1"
      name: "relu2_1"
      type: RELU
    }
    layers {
      bottom: "conv2_1"
      top: "conv2_2"
      name: "conv2_2"
      type: CONVOLUTION
      convolution_param {
        num_output: 128
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv2_2"
      top: "conv2_2"
      name: "relu2_2"
      type: RELU
    }
    layers {
      bottom: "conv2_2"
      top: "pool2"
      name: "pool2"
      type: POOLING
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layers {
      bottom: "pool2"
      top: "conv3_1"
      name: "conv3_1"
      type: CONVOLUTION
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv3_1"
      top: "conv3_1"
      name: "relu3_1"
      type: RELU
    }
    layers {
      bottom: "conv3_1"
      top: "conv3_2"
      name: "conv3_2"
      type: CONVOLUTION
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv3_2"
      top: "conv3_2"
      name: "relu3_2"
      type: RELU
    }
    layers {
      bottom: "conv3_2"
      top: "conv3_3"
      name: "conv3_3"
      type: CONVOLUTION
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv3_3"
      top: "conv3_3"
      name: "relu3_3"
      type: RELU
    }
    layers {
      bottom: "conv3_3"
      top: "pool3"
      name: "pool3"
      type: POOLING
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layers {
      bottom: "pool3"
      top: "conv4_1"
      name: "conv4_1"
      type: CONVOLUTION
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv4_1"
      top: "conv4_1"
      name: "relu4_1"
      type: RELU
    }
    layers {
      bottom: "conv4_1"
      top: "conv4_2"
      name: "conv4_2"
      type: CONVOLUTION
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv4_2"
      top: "conv4_2"
      name: "relu4_2"
      type: RELU
    }
    layers {
      bottom: "conv4_2"
      top: "conv4_3"
      name: "conv4_3"
      type: CONVOLUTION
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv4_3"
      top: "conv4_3"
      name: "relu4_3"
      type: RELU
    }
    layers {
      bottom: "conv4_3"
      top: "pool4"
      name: "pool4"
      type: POOLING
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layers {
      bottom: "pool4"
      top: "conv5_1"
      name: "conv5_1"
      type: CONVOLUTION
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv5_1"
      top: "conv5_1"
      name: "relu5_1"
      type: RELU
    }
    layers {
      bottom: "conv5_1"
      top: "conv5_2"
      name: "conv5_2"
      type: CONVOLUTION
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv5_2"
      top: "conv5_2"
      name: "relu5_2"
      type: RELU
    }
    layers {
      bottom: "conv5_2"
      top: "conv5_3"
      name: "conv5_3"
      type: CONVOLUTION
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layers {
      bottom: "conv5_3"
      top: "conv5_3"
      name: "relu5_3"
      type: RELU
    }
    layers {
      bottom: "conv5_3"
      top: "pool5"
      name: "pool5"
      type: POOLING
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layers {
      bottom: "pool5"
      top: "fc6"
      name: "fc6"
      type: INNER_PRODUCT
      inner_product_param {
        num_output: 4096
      }
    }
    layers {
      bottom: "fc6"
      top: "fc6"
      name: "relu6"
      type: RELU
    }
    layers {
      bottom: "fc6"
      top: "fc6"
      name: "drop6"
      type: DROPOUT
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layers {
      bottom: "fc6"
      top: "fc7"
      name: "fc7"
      type: INNER_PRODUCT
      inner_product_param {
        num_output: 4096
      }
    }
    layers {
      bottom: "fc7"
      top: "fc7"
      name: "relu7"
      type: RELU
    }
    layers {
      bottom: "fc7"
      top: "fc7"
      name: "drop7"
      type: DROPOUT
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layers {
      bottom: "fc7"
      top: "fc8"
      name: "fc8"
      type: INNER_PRODUCT
      inner_product_param {
        num_output: 1000
      }
    }
    layers {
      bottom: "fc8"
      top: "prob"
      name: "prob"
      type: SOFTMAX
    }
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345

    训练脚本修改

    1)生成 test、trainval、deploy

    a. 执行 fcn/siftflow-fcn32s/net.py 生成 test.prototxt 和 trainval.prototxt 
    b. cp test.prototxt 为 deploy.protxt

    将第一个 data 层换成

    layer {
      name: "input"
      type: "Input"
      top: "data"
      input_param {
        # These dimensions are purely for sake of example;
        # see infer.py for how to reshape the net to the given input size.
        shape { dim: 1 dim: 3 dim: 256 dim: 256 }
      }
    }
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    删除网络后面包含 loss 的层(一共2个)

    2)修改 fcn/siftflow-fcn32s/solve.py

    import caffe
    import surgery, score
    
    import numpy as np
    import os
    import sys
    
    try:
        import setproctitle
        setproctitle.setproctitle(os.path.basename(os.getcwd()))
    except:
        pass
    
    vgg_weights = '../ilsvrc-nets/vgg16-fcn.caffemodel'
    vgg_proto = '../ilsvrc-nets/VGG_ILSVRC_16_layers_deploy.prototxt'
    
    # init
    caffe.set_device(0)
    caffe.set_mode_gpu()
    
    solver = caffe.SGDSolver('solver.prototxt')
    #solver.net.copy_from(weights)
    vgg_net = caffe.Net(vgg_proto, vgg_weights, caffe.TRAIN)
    surgery.transplant(solver.net, vgg_net)
    del vgg_net
    
    # surgeries
    interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
    surgery.interp(solver.net, interp_layers)
    
    # scoring
    test = np.loadtxt('../data/sift-flow/test.txt', dtype=str)
    
    for _ in range(50):
        solver.step(2000)
        # N.B. metrics on the semantic labels are off b.c. of missing classes;
        # score manually from the histogram instead for proper evaluation
        score.seg_tests(solver, False, test, layer='score_sem', gt='sem')
        score.seg_tests(solver, False, test, layer='score_geo', gt='geo')
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39

    3)修改 fcn/siftflow-fcn32s/solve.prototxt 
    添加快照设置:

    snapshot:4000
    snapshot_prefix:"snapshot/train"
    • 1
    • 2

    训练及测试

    1) 复制 fcn/ 下的 infer.py、score.py、siftflow_layers.py、surgery.py 到 fcn/siftflow-fcn32s 下

    2)python train.py 开始训练

    3)修改 infer.py 的模型路径及测试图片路径

              这里写图片描述 
                           图1. 迭代72000次的分割结果

    4)之后可以以 fcn32s 的训练结果为基础,训练 fcn16s 和 fcn8s 
     需要注意的是,对于 fcn16s 和 fcn8s,由于不需要重新构造网络层,因此 solve.py 不需要改

    import caffe
    import surgery, score
    
    import numpy as np
    import os
    import sys
    
    try:
        import setproctitle
        setproctitle.setproctitle(os.path.basename(os.getcwd()))
    except:
        pass
    
    weights = '../siftflow-fcn32s/snapshot/train_iter_100000.caffemodel'
    
    # init
    caffe.set_device(0)
    caffe.set_mode_gpu()
    
    solver = caffe.SGDSolver('solver.prototxt')
    solver.net.copy_from(weights)
    
    # surgeries
    interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
    surgery.interp(solver.net, interp_layers)
    
    # scoring
    test = np.loadtxt('../data/sift-flow/test.txt', dtype=str)
    
    for _ in range(50):
        solver.step(2000)
        # N.B. metrics on the semantic labels are off b.c. of missing classes;
        # score manually from the histogram instead for proper evaluation
        score.seg_tests(solver, False, test, layer='score_sem', gt='sem')
        score.seg_tests(solver, False, test, layer='score_geo', gt='geo')
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35

    如何制作自己的训练数据

    相比 detect(使用LabelImg框选目标),segment的数据需要耗费很大精力去准备

    参考这篇帖子,MIT提供了一个在线标注多边形的工具LabelMe,但一般在工程上,为了尽量精确,更多还是使用 photoshop 的“快速选择”工具

    1)首先用 ps 打开待标记图像,“图像->模式->灰度”,将图像转为灰度图 
    2)使用“快速选择”工具,选出目标区域,“右键->填充->颜色”,假设该区域的 label 为 9 ,那么设置 RGB 为 (9,9,9)

               这里写图片描述 
                               图2. 选择区域并填充

    3)所有类别填充完成后,“文件->存储为”label 图像

    注意:以上方法针对 SegNet 里的 CamVid 数据格式(图3)

                           这里写图片描述
                             图3. CamVid 数据格式

    如图3所示,train和test里为RGB图像,trainannot和testannot里为标记过的label图像(灰度) 
          一组训练(图3右)数据包含两张图像

  • 相关阅读:
    Java基本数据类型的包装类
    Java数据类型基础
    Xscan安装
    Notepad++配置HexEditor插件
    [WP]XCTF-re2-cpp-is-awesome
    [WP]XCTF-tt3441810
    [WP]XCTF-re1-100
    [WP]XCTF-Mysterious
    [WP]xctf-parallel-comparator-200
    [WP]XCTF-elrond32
  • 原文地址:https://www.cnblogs.com/jukan/p/9217419.html
Copyright © 2020-2023  润新知