• The Bottom of a Graph-POJ2553强连通


    The Bottom of a Graph


    Time Limit: 3000MS Memory Limit: 65536K
    Total Submissions: 9759 Accepted: 4053

    Description
    We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.

    Let n be a positive integer, and let p=(e1,…,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,…,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).

    Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

    Input

    The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,…,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,…,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

    这里写图片描述

    Output

    For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

    Sample Input

    3 3
    1 3 2 3 3 1
    2 1
    1 2
    0

    Sample Output

    1 3
    2

    Source

    Ulm Local 2003

    题意:使用的图论的方式说明了一个新的定义,汇点的定义,v是图中的一个顶点,对于图中的每一个顶点w,如果v可达w并且w也可达v,ze称v为汇点。图的底部为图的子集,子集中的所有的点都是汇点,求图的底部。
    思路:如果图的底部都是汇点,则说明底部中的任意两点都互相可达,则底部为强连通分量,并且这个集合不与外部相连即从这个集合不能到达其他的集合,所以任务就变成求图的强连通分量并且出度为零

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <cstdlib>
    #include <queue>
    #include <stack>
    #include <set>
    #include <vector>
    #include <algorithm>
    
    using namespace std;
    
    const int Max = 5010;
    
    typedef struct node
    {
        int v;
    
        int next;
    }Line;
    
    Line Li[Max*1000];
    
    int Head[Max],top;
    
    int dfn[Max],low[Max],pre[Max],dep;
    
    vector<int>G[Max];
    
    int a[Max],num,Du[Max],Num;
    
    bool vis[Max];
    
    stack <int> S;
    
    int n,m;
    
    void AddEdge(int u,int v)
    {
        Li[top].v = v; Li[top].next = Head[u];
    
        Head[u] = top++;
    }
    
    void Tarjan(int u) // Tarjan求强连通分量
    {
    
        dfn[u]=low[u]=dep++;
    
        S.push(u);
    
        for(int i=Head[u];i!=-1;i=Li[i].next)
        {
            if(dfn[Li[i].v]==-1)
            {
                Tarjan(Li[i].v);
    
                low[u] = min(low[u],low[Li[i].v]);
            }
            else
            {
                low[u]=min(low[u],dfn[Li[i].v]);
            }
        }
    
        if(low[u]==dfn[u])// 如果low[u]=dfn[u],则说明是强连通分的根节点
        {
            while(!S.empty())
            {
                int v = S.top();
    
                S.pop();
    
                G[Num].push_back(v);
    
                pre[v]=Num;
    
                if(v==u)
                {
                    break;
                }
            }
    
            Num++;
        }
    }
    
    int main()
    {
        int u, v;
    
        while(~scanf("%d",&n)&&n)
        {
            scanf("%d",&m);
    
            top = 0;
    
            memset(Head,-1,sizeof(Head));
    
            for(int i=0;i<m;i++)
            {
                scanf("%d %d",&u,&v);
    
                AddEdge(u,v);
            }
    
            memset(dfn,-1,sizeof(dfn));
    
    
            for(int i=0;i<=n;i++)
            {
                G[i].clear();
            }
    
            dep = 0;Num = 0;
    
            for(int i=1;i<=n;i++)
            {
                if(dfn[i]==-1)
                {
                    Tarjan(i);
                }
            }
    
            memset(Du,0,sizeof(Du));
    
            for(int i=0;i<Num;i++)
            {
                memset(vis,false,sizeof(vis));
    
                for(int k=0;k<G[i].size();k++)
                {
                    for(int j=Head[G[i][k]];j!=-1;j = Li[j].next)
                    {
                        if(i != pre[Li[j].v]&&!vis[pre[Li[j].v]])//集合间度的计算
                        {
                            vis[pre[Li[j].v]]=true;
    
                            Du[i]++;
                        }
                    }
                }
            }
    
            num = 0;
    
            for(int i=0;i<Num;i++)
            {
                if(Du[i]==0)
                {
                    for(int j=0;j<G[i].size();j++)
                    {
                        a[num++]=G[i][j];
                    }
                }
            }
            sort(a,a+num);// 排序输出
    
            for(int i=0;i<num;i++)
            {
                if(i)
                {
                    printf(" ");
                }
                printf("%d",a[i]);
            }
            printf("
    ");
    
        }
    
        return 0;
    }
  • 相关阅读:
    前端之页面标签的图标修改
    分页, 解析器, 渲染器
    DRF的认证,频率,权限
    视图组件,路由组件,版本控制
    序列化组件
    Restful规范
    docker大全集
    哨兵和docker容器
    项目发布须知
    Linux之nginx
  • 原文地址:https://www.cnblogs.com/juechen/p/5255889.html
Copyright © 2020-2023  润新知