Sequence
Time Limit: 6000MS Memory Limit: 65536K
Total Submissions: 8277 Accepted: 2708
Description
Given m sequences, each contains n non-negative integer. Now we may select one number from each sequence to form a sequence with m integers. It’s clear that we may get n ^ m this kind of sequences. Then we can calculate the sum of numbers in each sequence, and get n ^ m values. What we need is the smallest n sums. Could you help us?
Input
The first line is an integer T, which shows the number of test cases, and then T test cases follow. The first line of each case contains two integers m, n (0 < m <= 100, 0 < n <= 2000). The following m lines indicate the m sequence respectively. No integer in the sequence is greater than 10000.
Output
For each test case, print a line with the smallest n sums in increasing order, which is separated by a space.
Sample Input
1
2 3
1 2 3
2 2 3
Sample Output
3 3 4
Source
POJ Monthly,Guang Lin
题意:给你一个m*n的矩阵,从每一行中选一个元素,组成m个元素的和,问和最小的n个数;
方法:用的优先队列,优先队列中保存n个元素是前i-1个行中和最小的n个数,队头是和最大的,然后让这n个和与第i行的元素从小到大相加,如果大于队头元素,则说明队头不是最小的,则去掉队头元素,加入更小的,直到将m行都加完,队列中的n个元素就是最小的你个数.
#include <map>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-9
#define LL long long
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define CRR fclose(stdin)
#define CWW fclose(stdout)
#define RR freopen("input.txt","r",stdin)
#pragma comment(linker, "/STACK:102400000")
#define WW freopen("output.txt","w",stdout)
const int MAX = 6000000+5;
int Arr[110][2110];
int b[2110];
priority_queue<int >Q;
int main()
{
int T;
int n,m;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m);
for(int i=0; i<n; i++)
{
for(int j=0; j<m; j++)
scanf("%d",&Arr[i][j]);
sort(Arr[i],Arr[i]+m);//进行排序
}
for(int i=0; i<m; i++)
{
Q.push(Arr[0][i]);//以第一行为基准
}
for(int i=1; i<n; i++)
{
for(int j=0; j<m; j++)
{
b[j]=Q.top();//先用数组储存起来
Q.pop();
}
for(int j=0; j<m; j++)//Arr[i]从小到大
{
for(int k=m-1; k>=0; k--)//b[]从小到大
{
if(j==0)
{
Q.push(Arr[i][j]+b[k]);//先是Arr[i][j]与前i-1个最小的n个数相加
}
else
{
if(Arr[i][j]+b[k]<Q.top())//如果小于队头,说明队头不是n个最小的和,去掉,加入更小的
{
Q.pop();
Q.push(Arr[i][j]+b[k]);
}
else//跳出,因为后面的更大,就没有必要判断
{
break;
}
}
}
}
}
for(int i=m-1; i>=0; i--)
{
b[i]=Q.top();
Q.pop();
}
for(int i=0; i<m; i++)
{
if(i)
printf(" ");
printf("%d",b[i]);
}
printf("
");
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。