• Flink 学习 — Flink 写入数据到 ElasticSearch


    前言

    前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector。

    1、《从0到1学习Flink》—— Data Source 介绍

    2、《从0到1学习Flink》—— Data Sink 介绍

    其中包括了 Source 和 Sink 的,后面我也讲了下如何自定义自己的 Source 和 Sink。

    那么今天要做的事情是啥呢?就是介绍一下 Flink 自带的 ElasticSearch Connector,我们今天就用他来做 Sink,将 Kafka 中的数据经过 Flink 处理后然后存储到 ElasticSearch。

    准备

    安装 ElasticSearch,这里就忽略,自己找我以前的文章,建议安装 ElasticSearch 6.0 版本以上的,毕竟要跟上时代的节奏。

    下面就讲解一下生产环境中如何使用 Elasticsearch Sink 以及一些注意点,及其内部实现机制。

    Elasticsearch Sink

    添加依赖

    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-elasticsearch6_${scala.binary.version}</artifactId>
        <version>${flink.version}</version>
    </dependency>
    

    上面这依赖版本号请自己根据使用的版本对应改变下。

    下面所有的代码都没有把 import 引入到这里来,如果需要查看更详细的代码,请查看我的 GitHub 仓库地址:

    https://github.com/zhisheng17/flink-learning/tree/master/flink-learning-connectors/flink-learning-connectors-es6

    这个 module 含有本文的所有代码实现,当然越写到后面自己可能会做一些抽象,所以如果有代码改变很正常,请直接查看全部项目代码。

    ElasticSearchSinkUtil 工具类

    这个工具类是自己封装的,getEsAddresses 方法将传入的配置文件 es 地址解析出来,可以是域名方式,也可以是 ip + port 形式。addSink 方法是利用了 Flink 自带的 ElasticsearchSink 来封装了一层,传入了一些必要的调优参数和 es 配置参数,下面文章还会再讲些其他的配置。

    ElasticSearchSinkUtil.java

    public class ElasticSearchSinkUtil {
    
        /**
         * es sink
         *
         * @param hosts es hosts
         * @param bulkFlushMaxActions bulk flush size
         * @param parallelism 并行数
         * @param data 数据
         * @param func
         * @param <T>
         */
        public static <T> void addSink(List<HttpHost> hosts, int bulkFlushMaxActions, int parallelism,
                                       SingleOutputStreamOperator<T> data, ElasticsearchSinkFunction<T> func) {
            ElasticsearchSink.Builder<T> esSinkBuilder = new ElasticsearchSink.Builder<>(hosts, func);
            esSinkBuilder.setBulkFlushMaxActions(bulkFlushMaxActions);
            data.addSink(esSinkBuilder.build()).setParallelism(parallelism);
        }
    
        /**
         * 解析配置文件的 es hosts
         *
         * @param hosts
         * @return
         * @throws MalformedURLException
         */
        public static List<HttpHost> getEsAddresses(String hosts) throws MalformedURLException {
            String[] hostList = hosts.split(",");
            List<HttpHost> addresses = new ArrayList<>();
            for (String host : hostList) {
                if (host.startsWith("http")) {
                    URL url = new URL(host);
                    addresses.add(new HttpHost(url.getHost(), url.getPort()));
                } else {
                    String[] parts = host.split(":", 2);
                    if (parts.length > 1) {
                        addresses.add(new HttpHost(parts[0], Integer.parseInt(parts[1])));
                    } else {
                        throw new MalformedURLException("invalid elasticsearch hosts format");
                    }
                }
            }
            return addresses;
        }
    }
    

    Main 启动类

    Main.java

    public class Main {
        public static void main(String[] args) throws Exception {
            //获取所有参数
            final ParameterTool parameterTool = ExecutionEnvUtil.createParameterTool(args);
            //准备好环境
            StreamExecutionEnvironment env = ExecutionEnvUtil.prepare(parameterTool);
            //从kafka读取数据
            DataStreamSource<Metrics> data = KafkaConfigUtil.buildSource(env);
    
            //从配置文件中读取 es 的地址
            List<HttpHost> esAddresses = ElasticSearchSinkUtil.getEsAddresses(parameterTool.get(ELASTICSEARCH_HOSTS));
            //从配置文件中读取 bulk flush size,代表一次批处理的数量,这个可是性能调优参数,特别提醒
            int bulkSize = parameterTool.getInt(ELASTICSEARCH_BULK_FLUSH_MAX_ACTIONS, 40);
            //从配置文件中读取并行 sink 数,这个也是性能调优参数,特别提醒,这样才能够更快的消费,防止 kafka 数据堆积
            int sinkParallelism = parameterTool.getInt(STREAM_SINK_PARALLELISM, 5);
    
            //自己再自带的 es sink 上一层封装了下
            ElasticSearchSinkUtil.addSink(esAddresses, bulkSize, sinkParallelism, data,
                    (Metrics metric, RuntimeContext runtimeContext, RequestIndexer requestIndexer) -> {
                        requestIndexer.add(Requests.indexRequest()
                                .index(ZHISHENG + "_" + metric.getName())  //es 索引名
                                .type(ZHISHENG) //es type
                                .source(GsonUtil.toJSONBytes(metric), XContentType.JSON)); 
                    });
            env.execute("flink learning connectors es6");
        }
    }
    

    配置文件

    配置都支持集群模式填写,注意用 , 分隔!

    kafka.brokers=localhost:9092
    kafka.group.id=zhisheng-metrics-group-test
    kafka.zookeeper.connect=localhost:2181
    metrics.topic=zhisheng-metrics
    stream.parallelism=5
    stream.checkpoint.interval=1000
    stream.checkpoint.enable=false
    elasticsearch.hosts=localhost:9200
    elasticsearch.bulk.flush.max.actions=40
    stream.sink.parallelism=5
    

    运行结果

    执行 Main 类的 main 方法,我们的程序是只打印 flink 的日志,没有打印存入的日志(因为我们这里没有打日志):

    所以看起来不知道我们的 sink 是否有用,数据是否从 kafka 读取出来后存入到 es 了。

    你可以查看下本地起的 es 终端或者服务器的 es 日志就可以看到效果了。

    es 日志如下:

    上图是我本地 Mac 电脑终端的 es 日志,可以看到我们的索引了。

    如果还不放心,你也可以在你的电脑装个 kibana,然后更加的直观查看下 es 的索引情况(或者直接敲 es 的命令)

    我们用 kibana 查看存入 es 的索引如下:

    程序执行了一会,存入 es 的数据量就很大了。

    扩展配置

    上面代码已经可以实现你的大部分场景了,但是如果你的业务场景需要保证数据的完整性(不能出现丢数据的情况),那么就需要添加一些重试策略,因为在我们的生产环境中,很有可能会因为某些组件不稳定性导致各种问题,所以这里我们就要在数据存入失败的时候做重试操作,这里 flink 自带的 es sink 就支持了,常用的失败重试配置有:

    1、bulk.flush.backoff.enable 用来表示是否开启重试机制
    
    2、bulk.flush.backoff.type 重试策略,有两种:EXPONENTIAL 指数型(表示多次重试之间的时间间隔按照指数方式进行增长)、CONSTANT 常数型(表示多次重试之间的时间间隔为固定常数)
    
    3、bulk.flush.backoff.delay 进行重试的时间间隔
    
    4、bulk.flush.backoff.retries 失败重试的次数
    
    5、bulk.flush.max.actions: 批量写入时的最大写入条数
    
    6、bulk.flush.max.size.mb: 批量写入时的最大数据量
    
    7、bulk.flush.interval.ms: 批量写入的时间间隔,配置后则会按照该时间间隔严格执行,无视上面的两个批量写入配置
    

    看下啦,就是如下这些配置了,如果你需要的话,可以在这个地方配置扩充了。

    FailureHandler 失败处理器

    写入 ES 的时候会有这些情况会导致写入 ES 失败:

    1、ES 集群队列满了,报如下错误

    12:08:07.326 [I/O dispatcher 13] ERROR o.a.f.s.c.e.ElasticsearchSinkBase - Failed Elasticsearch item request: ElasticsearchException[Elasticsearch exception [type=es_rejected_execution_exception, reason=rejected execution of org.elasticsearch.transport.TransportService$7@566c9379 on EsThreadPoolExecutor[name = node-1/write, queue capacity = 200, org.elasticsearch.common.util.concurrent.EsThreadPoolExecutor@f00b373[Running, pool size = 4, active threads = 4, queued tasks = 200, completed tasks = 6277]]]]
    

    是这样的,我电脑安装的 es 队列容量默认应该是 200,我没有修改过。我这里如果配置的 bulk flush size * 并发 sink 数量 这个值如果大于这个 queue capacity ,那么就很容易导致出现这种因为 es 队列满了而写入失败。

    当然这里你也可以通过调大点 es 的队列。参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html

    2、ES 集群某个节点挂了

    这个就不用说了,肯定写入失败的。跟过源码可以发现 RestClient 类里的 performRequestAsync 方法一开始会随机的从集群中的某个节点进行写入数据,如果这台机器掉线,会进行重试在其他的机器上写入,那么当时写入的这台机器的请求就需要进行失败重试,否则就会把数据丢失!

    3、ES 集群某个节点的磁盘满了

    这里说的磁盘满了,并不是磁盘真的就没有一点剩余空间的,是 es 会在写入的时候检查磁盘的使用情况,在 85% 的时候会打印日志警告。

    这里我看了下源码如下图:

    如果你想继续让 es 写入的话就需要去重新配一下 es 让它继续写入,或者你也可以清空些不必要的数据腾出磁盘空间来。

    解决方法

    DataStream<String> input = ...;
    
    input.addSink(new ElasticsearchSink<>(
        config, transportAddresses,
        new ElasticsearchSinkFunction<String>() {...},
        new ActionRequestFailureHandler() {
            @Override
            void onFailure(ActionRequest action,
                    Throwable failure,
                    int restStatusCode,
                    RequestIndexer indexer) throw Throwable {
    
                if (ExceptionUtils.containsThrowable(failure, EsRejectedExecutionException.class)) {
                    // full queue; re-add document for indexing
                    indexer.add(action);
                } else if (ExceptionUtils.containsThrowable(failure, ElasticsearchParseException.class)) {
                    // malformed document; simply drop request without failing sink
                } else {
                    // for all other failures, fail the sink
                    // here the failure is simply rethrown, but users can also choose to throw custom exceptions
                    throw failure;
                }
            }
    }));
    

    如果仅仅只是想做失败重试,也可以直接使用官方提供的默认的 RetryRejectedExecutionFailureHandler ,该处理器会对 EsRejectedExecutionException 导致到失败写入做重试处理。如果你没有设置失败处理器(failure handler),那么就会使用默认的 NoOpFailureHandler 来简单处理所有的异常。

    总结

    本文写了 Flink connector es,将 Kafka 中的数据读取并存储到 ElasticSearch 中,文中讲了如何封装自带的 sink,然后一些扩展配置以及 FailureHandler 情况下要怎么处理。(这个问题可是线上很容易遇到的)

    原文地址:http://www.54tianzhisheng.cn/2018/12/30/Flink-ElasticSearch-Sink/

    .

    其他

  • 相关阅读:
    个性化推荐系统(二)---构建推荐引擎
    个性化推荐系统(一)---今日头条等的内容划分、分类
    双11线上压测netty内存泄露
    数据、信息、知识、智慧
    ReentrantLock的相关方法使用
    公平锁和非公平锁
    Lock中使用Condition实现等待通知
    使用IO流将数据库中数据生成一个文件,结果使用Notepad++打开部分数据结尾出现NUL
    ThreadLocal的使用
    join方法
  • 原文地址:https://www.cnblogs.com/jstarseven/p/14950241.html
Copyright © 2020-2023  润新知