• 一个交互式可视化Python库——Bokeh


    本篇为《Python数据可视化实战》第十篇文章,我们一起学习一个交互式可视化Python库——Bokeh。

    Bokeh基础

    Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。

    Bokeh绘图步骤

    ①获取数据

    ②构建画布figure()

    ③添加图层,绘图line,circle,square,scatter,multi_line等;参数co
    lor,legend

    ④自定义视觉属性

    ⑤选择性展示折线数据,建立复选框激活显示,复选框(checkbox)

    导入库和数据

    import numpy as np
    import bokeh
    from bokeh.layouts import gridplot
    from bokeh.plotting import figure, output_file, show
    

    图表实例

    1.散点图

    import numpy as np
    import bokeh
    from bokeh.layouts import gridplot
    from bokeh.plotting import figure, output_file, show
    # output_file("patch.html")  #输出网页形式
    p = figure(plot_width=100, plot_height=100)
    #数据
    N=9
    x=np.linspace(-2,2,N)
    y=x**2
    sizes=np.linspace(10,20,N)
    xpts=np.array([-0.09,-0.12,0.0,0.12,0.09])
    ypts=np.array([-0.1,0.02,0.1,0.02,-0.1])
    
    p=figure(title="annular_wedge")
    p.annular_wedge(x,y,10,20,0.3,4.1,color="#8888ee",inner_radius_units="screen",outer_radius_units="screen")
    # Set to output the plot in the notebook
    output_notebook()
    show(p)
    

    2.多分类的散点图

    from bokeh.sampledata.iris import flowers
    from bokeh.plotting import figure
    from bokeh.io import show, output_notebook
    #配色
    colormap={'setosa':'red','versicolor':'green','virginica':'blue'}
    colors=[colormap[x] for x in flowers['species']]
    #画布
    p=figure(title='Tris Morphology')
    #绘图
    #flowers['petal_length']为x,flowers['petal_width']为y,fill_alpha=0.3为填充透明度
    p.circle(flowers['petal_length'],flowers['petal_width'],color=colors,fill_alpha=0.3,size=10)   
    #显示
    output_notebook()
    show(p)
    

    3.数值大小以散点图大小来表示

    import numpy as np
    from bokeh.sampledata.iris import flowers
    from bokeh.plotting import figure
    from bokeh.io import show, output_notebook
    x=[1,2,3,4]
    y=[5,7,9,12]
    sizes=np.array(y)+10  #气泡大小
    p=figure(title='bubble chart')
    p=figure(plot_width=300,plot_height=300)
    p.scatter(x,y,marker="circle",size=sizes,color="navy")
    output_notebook()
    show(p)
    

    4.折线图line

    from bokeh.layouts import column, gridplot
    from bokeh.models import BoxSelectTool, Div
    from bokeh.plotting import figure
    from bokeh.io import show, output_notebook
    # 数据
    x = [1, 2, 3, 4, 5, 6, 7]
    y = [6, 7, 2, 4, 5, 10, 4]
    # 画布:坐标轴标签,画布大小
    p = figure(title="line example", x_axis_label='x', y_axis_label='y', width=400, height=400)
    # 画图:数据、图例、线宽
    p.line(x, y, legend="Temp.", line_width=2)  # 折线图
    # 显示
    output_notebook()
    show(p)
    

    5.同时展示不同函数,以散点和折线方式

    # 数据,同时展示不同函数,以散点和折线方式
    x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
    y0 = [i**2 for i in x]
    y1 = [10**i for i in x]
    y2 = [10**(i**2) for i in x]
    # 创建画布
    p = figure(
        tools="pan,box_zoom,reset,save",
        y_axis_type="log", title="log axis example",
        x_axis_label='sections', y_axis_label='particles',
        width=700, height=350)  # y轴类型:log指数或linear线性
    # 增加图层,绘图
    p.line(x, x, legend="y=x")
    p.circle(x, x, legend="y=x", fill_color="white", size=8)
    p.line(x, y0, legend="y=x^2", line_width=3)
    p.line(x, y1, legend="y=10^x", line_color="red")
    p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6)
    p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4")
    # 显示
    output_notebook()
    show(p)
    

    6.不同颜色不同形状表示不同类别的事物

    # 数据,同时展示不同函数,以散点和折线方式
    x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
    y0 = [i**2 for i in x]
    y1 = [10**i for i in x]
    y2 = [10**(i**2) for i in x]
    # 创建画布
    p = figure(
        tools="pan,box_zoom,reset,save",
        y_axis_type="log", title="log axis example",
        x_axis_label='sections', y_axis_label='particles',
        width=700, height=350)  # y轴类型:log指数或linear线性
    # 增加图层,绘图
    p.line(x, x, legend="y=x")
    p.circle(x, x, legend="y=x", fill_color="white", size=8)
    p.line(x, y0, legend="y=x^2", line_width=3)
    p.line(x, y1, legend="y=10^x", line_color="red")
    p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6)
    p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4")
    # 显示
    output_notebook()
    show(p)
    

    7.不同函数设置创建复选框库选择性显示

    x = np.linspace(0, 4 * np.pi, 100)
    # 画布
    p = figure()
    # 折线属性
    props = dict(line_width=4, line_alpha=0.7)
    # 绘图3条函数序列
    l0 = p.line(x, np.sin(x), color=Viridis3[0], legend="Line 0", **props)
    l1 = p.line(x, 4 * np.cos(x), color=Viridis3[1], legend="Line 1", **props)
    l2 = p.line(x, np.tan(x), color=Viridis3[2], legend="Line 2", **props)
    # 复选框激活显示,复选框(checkbox),三个函数序列可选择性展示出来
    checkbox = CheckboxGroup(labels=["Line 0", "Line 1", "Line 2"],
                             active=[0, 1, 2], width=100)
    #
    checkbox.callback = CustomJS(args=dict(l0=l0, l1=l1, l2=l2, checkbox=checkbox), code="""
    l0.visible = 0 in checkbox.active;
    l1.visible = 1 in checkbox.active;
    l2.visible = 2 in checkbox.active;
    """)
    # 添加图层
    layout = row(checkbox, p)
    output_notebook()
    # 显示
    show(layout)
    

    8.收盘价的时序图走势和散点图

    import numpy as np
    from bokeh.plotting import figure
    from bokeh.io import show, output_notebook
    from bokeh.layouts import row  #row()的作用是将多个图像以行的方式放到同一张图中
    from bokeh.palettes import Viridis3
    from bokeh.models import CheckboxGroup, CustomJS  #CheckboxGroup 创建复选框库
    # 数据
    aapl = np.array(AAPL['adj_close'])
    aapl_dates = np.array(AAPL['date'], dtype=np.datetime64)
    window_size = 30
    window = np.ones(window_size)/float(window_size)
    aapl_avg = np.convolve(aapl, window, 'same')
    # 画布
    p = figure(width=800, height=350, x_axis_type="datetime")
    # 图层
    p.circle(aapl_dates, aapl, size=4, color='darkgrey', alpha=0.2, legend='close') #散点图
    p.line(aapl_dates, aapl_avg, color='red', legend='avg') #折线时序图
    # 自定义视觉属性
    p.title.text = "AAPL One-Month Average"
    p.legend.location = "top_left"
    p.grid.grid_line_alpha=0
    p.xaxis.axis_label = 'Date'
    p.yaxis.axis_label = 'Price'
    p.ygrid.band_fill_color="gray"
    p.ygrid.band_fill_alpha = 0.1
    p.legend.click_policy="hide" # 点击图例显示隐藏数据
    # 显示结果
    output_notebook()
    show(p)
    


  • 相关阅读:
    linkedLoop
    loopqueue
    expect 切换用户
    二叉树的实现
    栈的链表实现, 底层使用链表
    栈的数组实现
    RSA加密算法
    输入一个链表,反转链表后,输出链表的所有元素
    输入一个链表,输出该链表中倒数第k个结点
    ansible中include_tasks和import_tasks
  • 原文地址:https://www.cnblogs.com/jpld/p/12510588.html
Copyright © 2020-2023  润新知