• 史上最全 Java 中各种锁的介绍


    更多精彩原创内容请关注:JavaInterview,欢迎 star,支持鼓励以下作者,万分感谢。

    锁的分类介绍

    乐观锁与悲观锁

    锁的一种宏观分类是乐观锁悲观锁。乐观锁与悲观锁并不是特定的指哪个锁(Java 中也没有那个具体锁的实现名就叫
    乐观锁或悲观锁),而是在并发情况下两种不同的策略。

    乐观锁(Optimistic Lock)就是很乐观,每次去拿数据的时候都认为别人不会修改。所以不会上锁。但是如果想要更新数据,
    则会在更新之前检查在读取至更新这段时间别人有没有修改过这个数据。如果修改过,则重新读取,再次尝试更新,循环上述
    步骤直到更新成功(当然也允许更新失败的线程放弃更新操作)。

    悲观锁(Pessimistic Lock)就是很悲观,每次去拿数据的时候都认为别人会修改。所以每次都在拿数据的时候上锁。
    这样别人拿数据的时候就会被挡住,直到悲观锁释放,想获取数据的线程再去获取锁,然后再获取数据。

    悲观锁阻塞事务,乐观锁回滚重试,它们个有优缺点,没有好坏之分,只有适应场景的不同区别。比如:乐观锁适合用于写
    比较少的情况下,即冲突真的很少发生的场景,这样可以省去锁的开销,加大了系统的整个吞吐量。但是如果经常产生冲突,上层
    应用会不断的进行重试,这样反而降低了性能,所以这种场景悲观锁比较合适。
    总结:乐观锁适合写比较少,冲突很少发生的场景;而写多,冲突多的场景适合使用悲观锁

    乐观锁的基础 --- CAS

    在乐观锁的实现中,我们必须要了解的一个概念:CAS。

    什么是 CAS 呢? Compare-and-Swap,即比较并替换,或者比较并设置

    • 比较:读取到一个值 A,在将其更新为 B 之前,检查原值是否为 A(未被其它线程修改过,这里忽略 ABA 问题)。

    • 替换:如果是,更新 A 为 B,结束。如果不是,则不会更新。

    上面两个步骤都是原子操作,可以理解为瞬间完成,在 CPU 看来就是一步操作。

    有了 CAS,就可以实现一个乐观锁:

    
    public class OptimisticLockSample{
        
        public void test(){
            int data = 123; // 共享数据
            
            // 更新数据的线程会进行如下操作
            for (;;) {
                int oldData = data;
                int newData = doSomething(oldData);
                
                // 下面是模拟 CAS 更新操作,尝试更新 data 的值
                if (data == oldData) { // compare
                    data = newData; // swap
                    break; // finish
                } else {
                    // 什么都不做,循环重试
                }
            }   
        }
        
        /**
        * 
        * 很明显,test() 里面的代码根本不是原子性的,只是展示了下 CAS 的流程。
        * 因为真正的 CAS 利用了 CPU 指令。
        *  
        * */ 
        
    
    }
    
    

    在 Java 中也是通过 native 方法实现的 CAS。

    
    public final class Unsafe {
        
        ...
        
        public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5);
        
        public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);
        
        public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);  
        
        ...
    } 
    
    
    

    上面写了一个简单直观的乐观锁(确切的来说应该是乐观锁流程)的实现,它允许多个线程同时读取(因为根本没有加锁操作),如果更新数据的话,
    有且仅有一个线程可以成功更新数据,并导致其它线程需要回滚重试。CAS 利用 CPU 指令,从硬件层面保证了原子性,以达到类似于锁的效果。

    从乐观锁的整个流程中可以看出,并没有加锁解锁的操作,因此乐观锁策略也被称作为无锁编程。换句话说,乐观锁其实不是"锁",
    它仅仅是一个循环重试的 CAS 算法而已。

    自旋锁

    synchronized 与 Lock interface

    Java 中两种实现加锁的方式:一种是使用 synchronized 关键字,另一种是使用 Lock 接口的实现类。

    在一篇文章中看到一个好的对比,非常形象,synchronized 关键字就像是自动挡,可以满足一切的驾驶需求。
    但是如果你想要做更高级的操作,比如玩漂移或者各种高级的骚操作,那么就需要手动挡,也就是 Lock 接口的实现类。

    而 synchronized 在经过 Java 每个版本的各种优化后,效率也变得很高了。只是使用起来没有 Lock 接口的实现类那么方便。

    synchronized 锁升级过程就是其优化的核心:偏向锁 -> 轻量级锁 -> 重量级锁

    
    class Test{
        private static final Object object = new Object(); 
        
        public void test(){
            synchronized(object) {
                // do something        
            }   
        }
        
    }
    
    

    使用 synchronized 关键字锁住某个代码块的时候,一开始锁对象(就是上述代码中的 object)并不是重量级锁,而是偏向锁。
    偏向锁的字面意思就是"偏向于第一个获取它的线程"的锁。线程执行完同步代码块之后,并不会主动释放偏向锁。当第二次到达同步
    代码块时,线程会判断此时持有锁的线程是否就是自己(持有锁的线程 ID 在对象头里存储),如果是则正常往下执行。由于之前没有释放,
    这里就不需要重新加锁
    ,如果从头到尾都是一个线程在使用锁,很明显偏向锁几乎没有额外开销,性能极高。

    一旦有第二个线程加入锁竞争,偏向锁转换为轻量级锁自旋锁)。锁竞争:如果多个线程轮流获取一个锁,但是每次获取的时候
    都很顺利,没有发生阻塞,那么就不存在锁竞争。只有当某线程获取锁的时候,发现锁已经被占用,需要等待其释放,则说明发生了锁竞争。

    在轻量级锁状态上继续锁竞争,没有抢到锁的线程进行自旋操作,即在一个循环中不停判断是否可以获取锁。获取锁的操作,就是通过 CAS 操
    作修改对象头里的锁标志位。先比较当前锁标志位是否为释放状态,如果是,将其设置为锁定状态,比较并设置是原子性操作,这个
    是 JVM 层面保证的。当前线程就算持有了锁,然后线程将当前锁的持有者信息改为自己。

    假如我们获取到锁的线程操作时间很长,比如会进行复杂的计算,数据量很大的网络传输等;那么其它等待锁的线程就会进入长时间的自旋操作,这个
    过程是非常耗资源的。其实这时候相当于只有一个线程在有效地工作,其它的线程什么都干不了,在白白地消耗 CPU,这种现象叫做忙等
    (busy-waiting)
    。所以如果多个线程使用独占锁,但是没有发生锁竞争,或者发生了很轻微的锁竞争,那么 synchronized 就是轻量
    级锁,允许短时间的忙等现象。这是一种择中的想法,短时间的忙等,换取线程在用户态和内核态之间切换的开销

    显然,忙等是有限度的(JVM 有一个计数器记录自旋次数,默认允许循环 10 次,可以通过虚拟机参数更改)。如果锁竞争情况严重,
    达到某个最大自旋次数的线程,会将轻量级锁升级为重量级锁(依然是通过 CAS 修改锁标志位,但不修改持有锁的线程 ID)。当后续线程尝试获取
    锁时,发现被占用的锁是重量级锁,则直接将自己挂起(而不是上面说的忙等,即不会自旋),等待释放锁的线程去唤醒。在 JDK1.6 之前, synchronized
    直接加重量级锁,很明显现在通过一系列的优化过后,性能明显得到了提升。

    JVM 中,synchronized 锁只能按照偏向锁、轻量级锁、重量级锁的顺序逐渐升级(也有把这个称为锁膨胀的过程),不允许降级。

    可重入锁(递归锁)

    可重入锁的字面意思是"可以重新进入的锁",即允许同一个线程多次获取同一把锁。比如一个递归函数里有加锁操作,递归函数里这个锁会阻塞自己么?
    如果不会,那么这个锁就叫可重入锁(因为这个原因可重入锁也叫做递归锁)。

    Java 中以 Reentrant 开头命名的锁都是可重入锁,而且 JDK 提供的所有现成 Lock 的实现类,包括 synchronized 关键字锁都是可重入的
    如果真的需要不可重入锁,那么就需要自己去实现了,获取去网上搜索一下,有很多,自己实现起来也很简单。

    如果不是可重入锁,在递归函数中就会造成死锁,所以 Java 中的锁基本都是可重入锁,不可重入锁的意义不是很大,我暂时没有想到什么场景下会用到;
    注意:有想到需要不可重入锁场景的小伙伴们可以留言一起探讨

    下图展示一下 Lock 的相关实现类:
    ilock.png

    公平锁和非公平锁

    如果多个线程申请一把公平锁,那么获得锁的线程释放锁的时候,先申请的先得到,很公平。如果是非公平锁,后申请的线程可能先获得锁,是
    随机获取还是其它方式,都是根据实现算法而定的。

    对 ReentrantLock 类来说,通过构造函数可以指定该锁是否是公平锁,默认是非公平锁。因为在大多数情况下,非公平锁的吞吐量比公平锁的大,
    如果没有特殊要求,优先考虑使用非公平锁。

    而对于 synchronized 锁而言,它只能是一种非公平锁,没有任何方式使其变成公平锁。这也是 ReentrantLock 相对于 synchronized 锁的一个
    优点,更加的灵活。

    以下是 ReentrantLock 构造器代码:

    
    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }
    
    

    ReentrantLock 内部实现了 FairSync 和 NonfairSync 两个内部类来实现公平锁和非公平锁。具体源码分析会在接下来的章节给出,敬请关注
    该项目,欢迎 forkstar

    可中断锁

    字面意思是"可以响应中断的锁"。

    首先,我们需要理解的是什么是中断。 Java 中并没有提供任何可以直接中断线程的方法,只提供了中断机制。那么何为中断机制呢?
    线程 A 向线程 B 发出"请你停止运行"的请求,就是调用 Thread.interrupt() 的方法(当然线程 B 本身也可以给自己发送中断请求,
    即 Thread.currentThread().interrupt()),但线程 B 并不会立即停止运行,而是自行选择在合适的时间点以自己的方式响应中断,也可以
    直接忽略此中断。也就是说,Java 的中断不能直接终止线程,只是设置了状态为响应中断的状态,需要被中断的线程自己决定怎么处理。这就像
    在读书的时候,老师在晚自习时叫学生自己复习功课,但学生是否复习功课,怎么复习功课则完全取决于学生自己。

    回到锁的分析上来,如果线程 A 持有锁,线程 B 等待持获取该锁。由于线程 A 持有锁的时间过长,线程 B 不想继续等了,我们可以让线程 B 中断
    自己或者在别的线程里面中断 B,这种就是 可中段锁

    在 Java 中, synchronized 锁是不可中断锁,而 Lock 的实现类都是 可中断锁。从而可以看出 JDK 自己实现的 Lock 锁更加的
    灵活,这也就是有了 synchronized 锁后,为什么还要实现那么些 Lock 的实现类。

    Lock 接口的相关定义:

    
    public interface Lock {
    
        void lock();
    
        void lockInterruptibly() throws InterruptedException;
    
        boolean tryLock();
        
        boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    
        
        void unlock();
    
        Condition newCondition();
    }
    
    

    其中 lockInterruptibly 就是获取可中断锁。

    共享锁

    字面意思是多个线程可以共享一个锁。一般用共享锁都是在读数据的时候,比如我们可以允许 10 个线程同时读取一份共享数据,这时候我们
    可以设置一个有 10 个凭证的共享锁。

    在 Java 中,也有具体的共享锁实现类,比如 Semaphore。 该类的源码分析会在后续章节进行分析,敬请关注该项目,欢迎 forkstar

    互斥锁

    字面意思是线程之间互相排斥的锁,也就是表明锁只能被一个线程拥有。

    在 Java 中, ReentrantLock、synchronized 锁都是互斥锁。

    读写锁

    读写锁其实是一对锁,一个读锁(共享锁)和一个写锁(互斥锁、排他锁)。

    在 Java 中, ReadWriteLock 接口只规定了两个方法,一个返回读锁,一个返回写锁。

    
    public interface ReadWriteLock {
        /**
         * Returns the lock used for reading.
         *
         * @return the lock used for reading
         */
        Lock readLock();
    
        /**
         * Returns the lock used for writing.
         *
         * @return the lock used for writing
         */
        Lock writeLock();
    }
    
    

    文章前面讲过[乐观锁策略](#乐观锁的基础 --- CAS),所有线程可以随时读,仅在写之前判断值有没有被更改。

    读写锁其实做的事情是一样的,但是策略稍有不同。很多情况下,线程知道自己读取数据后,是否是为了更改它。那么为何不在加锁的时候直接明确
    这一点呢?如果我读取值是为了更新它(SQL 的 for update 就是这个意思),那么加锁的时候直接加写锁,我持有写锁的时候,别的线程
    无论是读还是写都需要等待;如果读取数据仅仅是为了前端展示,那么加锁时就明确加一个读锁,其它线程如果也要加读锁,不需要等待,可以
    直接获取(读锁计数器加 1)。

    虽然读写锁感觉与乐观锁有点像,但是读写锁是悲观锁策略。因为读写锁并没有在更新前判断值有没有被修改过,而是在加锁前决定
    应该用读锁还是写锁。乐观锁特指无锁编程。

    JDK 内部提供了一个唯一一个 ReadWriteLock 接口实现类是 ReentrantReadWriteLock。通过名字可以看到该锁提供了读写锁,并且也是
    可重入锁。

    总结

    Java 中使用的各种锁基本都是悲观锁,那么 Java 中有乐观锁么?结果是肯定的,那就是 java.util.concurrent.atomic 下面的
    原子类都是通过乐观锁实现的。如下:

    
    public final int getAndAddInt(Object var1, long var2, int var4) {
        int var5;
        do {
            var5 = this.getIntVolatile(var1, var2);
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
    
        return var5;
    }
    
    

    通过上述源码可以发现,在一个循环里面不断 CAS,直到成功为止。

    参数介绍

    -XX:-UseBiasedLocking=false 关闭偏向锁
    
    JDK1.6 
    
    -XX:+UseSpinning 开启自旋锁
    
    -XX:PreBlockSpin=10 设置自旋次数 
    
    JDK1.7 之后 去掉此参数,由 JVM 控制
    
    
    
  • 相关阅读:
    背包——[Usaco2007 Jan]Running POJ3661
    KMP的next函数——BZOJ1355
    对括号匹配问题的在深入思考
    优先队列——[Usaco2009 Open]工作安排Job
    完全背包——poj 3181
    奇异数
    背包计数
    最大递增子序和——POJ3616
    大组合数取模——fzu 2020(可做模板)
    activemq 代码库
  • 原文地址:https://www.cnblogs.com/joyang/p/11835054.html
Copyright © 2020-2023  润新知