• 隐马尔科夫模型及Viterbi算法的应用


    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4335810.html

    一个例子:

    韦小宝使用骰子进行游戏,他有两种骰子一种正常的骰子,还有一种不均匀的骰子,来进行出千。

    开始游戏时他有2/5的概率出千。

    对于正常的骰子A,每个点出现的概率都是1/6.

    对于不均匀的骰子B,5,6两种出现的概率为3/10,其余为1/10.

    出千的随机规律如下图所示:

    我们观测到的投掷结果为:ob={1,3,4,5,5,6,6,3,2,6}

    请判断韦小宝什么时候出千了?

    我们可以这样建模$x_i$表示第$i$次投掷的骰子的种类,$y_i$表示第$i$次投掷出的点数,$lambda$表示各个概率参数。

    那么第$t$次使用第$i$种骰子投掷的概率$delta_t(i)$等于

    egin{equation} delta_t(i)=max_{x_1,dots,x_{t-1}}P(x_1,dots,x_{t-1},x_t=i,y_1,dots,y_t|lambda) end{equation}

    其实$delta_{t+1}(i)$可以由$delta_t(i)$推倒得出:

    egin{eqnarray} delta_{t+1}(i) &=& max_{x_1,dots,x_{t}}P(x_1,dots,x_{t},x_{t+1}=i,y_1,dots,y_{t+1}|lambda)\ &=& max_j delta_t(j)alpha_{ji}eta_i(y_{t+1})end{eqnarray}

    其中$alpha_{ji}$表示从第$j$个骰子转移到第$i$个骰子的概率。

    $eta_i(y_{t+1})$表示使用第i个骰子投出点$y_{t+1}$的概率。

    从而可以使用上述利用动态规划算法进行逐次递推计算。

    得到的结果为:

    t $y_t$ $delta_t(A)$ $Psi_t(A)$ $delta_t(B)$ $Psi_t(B)$
    1 1 0.1 A 0.04 A
    2 3 0.0133333 A 0.0036 B
    3 4 0.00177778 A 0.000324 B
    4 5 0.000237037 A 0.000106667 A
    5 5 3.16049e-05 A 2.88e-05 B
    6 6 4.21399e-06 A 7.776e-06 B
    7 6 5.61866e-07 A 2.09952e-06 B
    8 3 7.49154e-08 A 1.88957e-07 B
    9 2 9.98872e-09 A 1.70061e-08 B
    10 6 1.33183e-09 A 4.59165e-09 B


    因为最后一步$delta_t(B)$的值大于$delta_t(A)$,所以一次使用B骰子的概率最大,从而一直向上回溯,得到的使用骰子的序列为:AAABBBBBBB

    代码如下所示:

     1 #include <stdlib.h>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <string>
     5 #include <iostream>
     6 using namespace std;
     7 double initP[2] = {0.6, 0.4};//骰子A,B的初始概率
     8 double transferMatrix[2][2] = {{0.8, 0.2}, {0.1, 0.9}};//骰子之间的转移概率
     9 double EmissionP[2][6]={{1/6.0, 1/6.0, 1/6.0, 1/6.0, 1/6.0, 1/6.0},//骰子A的发射概率
    10                         {0.1, 0.1, 0.1, 0.1, 0.3, 0.3}};//骰子B的发射概率
    11 double dp[10][2];//dp[i][j]第i步时,使用第j个骰子的最大概率
    12 double dpS[10][2];//dpS[i][j]第i步时,使用第j个骰子,得到的最大概率时,使用的骰子种类, 0->A, 1->B
    13 int ob[10] = {1, 3, 4, 5, 5, 6, 6, 3, 2, 6};//观测点数
    14 bool diceArray[10];//预测骰子使用序列
    15 void Viterbi()
    16 {
    17     memset(dp,0,sizeof(dp));
    18     memset(dpS,0,sizeof(dpS));
    19     memset(diceArray,0,sizeof(diceArray));
    20     dp[0][0] = initP[0]* EmissionP[0][ob[0]-1];
    21     dp[0][1] = initP[1]* EmissionP[1][ob[0]-1];
    22     for( int i = 1 ; i < 10 ; i++ )//投掷次数
    23     {
    24         for( int j = 0 ; j < 2 ; j++ )//当前状态
    25         {
    26             for( int k = 0 ; k < 2 ; k++ )//上一个状态
    27             {
    28                 double tempP = dp[i-1][k] * transferMatrix[k][j] * EmissionP[j][ob[i]-1] ;
    29                 if( dp[i][j] < tempP )
    30                 {
    31                     dp[i][j] = tempP;
    32                     dpS[i][j] = k;
    33                 }
    34             }
    35         }
    36     }
    37     int maxState = 0;
    38     if( dpS[9][0] < dpS[9][1] )
    39     {
    40         maxState = 1;
    41     }
    42     for( int i = 9 ; i >=0 ; i-- )
    43     {
    44         diceArray[i] = maxState; 
    45         maxState = dpS[i][maxState];
    46     }
    47 }
    48 int main(int argc, char *argv[])
    49 {
    50     Viterbi();
    51     cout<<"每步每个状态下的概率和骰子种类:"<<endl;
    52     for( int i = 0 ; i < 10 ; i++ )
    53     {
    54         for( int j = 0 ; j < 2 ; j++ )
    55         {
    56             cout<<dp[i][j]<<" "<<dpS[i][j]<<"    ";
    57         }
    58         cout<<endl;
    59     }
    60     cout<<"预测骰子种类,0->A, 1->B : "<<endl;
    61     for( int i = 0 ; i < 10 ; i++ )
    62     {
    63         cout<<diceArray[i]<<" ";
    64     }
    65     cout<<endl;
    66 }
    67 /* result:
    68 每步每个状态下的概率和骰子种类:
    69 0.1 0    0.04 0    
    70 0.0133333 0    0.0036 1    
    71 0.00177778 0    0.000324 1    
    72 0.000237037 0    0.000106667 0    
    73 3.16049e-05 0    2.88e-05 1    
    74 4.21399e-06 0    7.776e-06 1    
    75 5.61866e-07 0    2.09952e-06 1    
    76 7.49154e-08 0    1.88957e-07 1    
    77 9.98872e-09 0    1.70061e-08 1    
    78 1.33183e-09 0    4.59165e-09 1    
    79 预测骰子种类,0->A, 1->B : 
    80 0 0 0 1 1 1 1 1 1 1 
    81 */
    View Code
  • 相关阅读:
    (5)html表单
    (4)html表格
    (3)HTML ”列表“、图片和超链接
    (1)html开头解说与案例演示
    学习web前端前感
    一、资源合并与压缩
    HTTP协议原理
    图解HTTP总结
    基于TypeScript从零重构axios
    元組
  • 原文地址:https://www.cnblogs.com/jostree/p/4335810.html
Copyright © 2020-2023  润新知