• 字符串匹配的KMP算法详解及C#实现


    字符串匹配是计算机的基本任务之一。

      举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

          这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

          1.

      首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

      2.

      因为B与A不匹配,搜索词再往后移。

      3.

      就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

      4.

      接着比较字符串和搜索词的下一个字符,还是相同。

      5.

      直到字符串有一个字符,与搜索词对应的字符不相同为止。

      6.

      这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

      7.

      一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

      8.

      怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

      9.

      已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

      移动位数 = 已匹配的字符数 - 对应的部分匹配值

      因为 6 - 2 等于4,所以将搜索词向后移动4位。

      10.

      因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

      11.

      因为空格与A不匹配,继续后移一位。

      12.

      逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

      13.

      逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

      14.

      下面介绍《部分匹配表》是如何产生的。

      首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

      15.

      "部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

      - "A"的前缀和后缀都为空集,共有元素的长度为0;

      - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

      - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

      - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

      - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

      - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

      - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

      16.

      "部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

    以上 KMP算法的分析 原文地址:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

    下面是我用C#实现上述分析:

     1         /// <summary>
     2         /// KMP算法查找字符串
     3         /// </summary>
     4         /// <param name="operateStr">操作字符串</param>
     5         /// <param name="findStr">要查找的字符串</param>
     6         /// <returns>字符串第一次出现的位置索引</returns>
     7         public static int Arithmetic_KMP(string operateStr, string findStr)
     8         {
     9             int index = -1;   //正确匹配的开始索引
    10             int[] tableValue = GetPartialMatchTable(findStr);
    11             int i = 0, j = 0; //操作字符串和匹配字符串 索引迭代
    12             while (i < operateStr.Length && j < findStr.Length)
    13             {
    14                 if (operateStr[i] == findStr[j]) //当第一个字符匹配上,接着匹配第二、、、
    15                 {
    16                     if (j == 0) index = i;       //记录第一个匹配字符的索引
    17                     j++;
    18                     i++;
    19                 }
    20                 else  //当没有匹配上的时候
    21                 {
    22                     if (j == 0) //如果第一个字符就没匹配上
    23                     {
    24                         i += j + 1 - tableValue[j]; //移动位数 =已匹配的字符数 - 对应的部分匹配值
    25                     }
    26                     else
    27                     {
    28                         i = index + j - tableValue[j - 1]; //如果已匹配的字符数不为零,则重新定义i迭代
    29                     }
    30                     j = 0; //将已匹配迭代置为0
    31                 }
    32             }
    33             return index;
    34         }
    35         /// <summary>
    36         /// 产生 部分匹配表
    37         /// </summary>
    38         /// <param name="str">要查找匹配的字符串</param>
    39         /// <returns></returns>
    40         public static int[] GetPartialMatchTable(string str)
    41         {
    42             string[] left, right; //前缀、后缀
    43             int[] result = new int[str.Length]; //保存 部分匹配表
    44             for (int i = 0; i < str.Length; i++)
    45             {
    46                 left = new string[i]; //实例化前缀 容器
    47                 right = new string[i]; //实例化后缀容器
    48                 //前缀
    49                 for (int j = 0; j < i; j++)
    50                 {
    51                     if (j == 0)
    52                         left[j] = str[j].ToString();
    53                     else
    54                         left[j] = left[j - 1] + str[j].ToString();
    55                 }
    56                 //后缀
    57                 for (int k = i; k > 0; k--)
    58                 {
    59                     if (k == i)
    60                         right[k - 1] = str[k].ToString();
    61                     else
    62                         right[k - 1] = str[k].ToString() + right[k];
    63                 }
    64                 //找到前缀和后缀中相同的项,长度即为相等项的长度(相等项应该只有一项)
    65                 int num = left.Length - 1;
    66                 for (int m = 0; m < left.Length; m++)
    67                 {
    68                     if (right[num] == left[m])
    69                     {
    70                         result[i] = left[m].Length;
    71                     }
    72                     num--;
    73                 }
    74             }
    75             return result;
    76         }
    View Code

    如果要查询出匹配字符串出现的所有位置,可以使用递推来循环查找,代码如下:

     1         /// <summary>
     2         /// 尾递归查询出 字符串出现的所有开始索引 
     3         /// </summary>
     4         /// <param name="str1">操作字符串</param>
     5         /// <param name="str2">要查找的字符串</param>
     6         /// <param name="indexs">位置索引 集合</param>
     7         public static void Search(string str1, string str2, IList<int> indexs)
     8         {
     9             int index = Arithmetic_KMP(str1, str2);
    10             int temp = index;
    11             if (indexs.Count > 0)
    12             {
    13                 index += indexs[indexs.Count - 1] + str2.Length;
    14             }
    15             indexs.Add(index);
    16             if (temp + (str2.Length - 1) * 2 <= str1.Length)
    17                 Search(str1.Substring(temp + str2.Length), str2, indexs);
    18         }
    View Code


    这是我看了KMP算法解析后,用C#代码实现的。如有不足之处,请指出,谢谢!还有其他朋友的实现,代码如下:

     1         private static int KmpIndexOf(string s, string t)
     2         {
     3             int i = 0, j = 0, v;
     4             int[] nextVal = GetNextVal(t);
     5 
     6             while (i < s.Length && j < t.Length)
     7             {
     8                 if (j == -1 || s[i] == t[j])
     9                 {
    10                     i++;
    11                     j++;
    12                 }
    13                 else
    14                 {
    15                     j = nextVal[j];
    16                 }
    17             }
    18 
    19             if (j >= t.Length)
    20                 v = i - t.Length;
    21             else
    22                 v = -1;
    23 
    24             return v;
    25         }
    26 
    27 
    28 
    29         private static int[] GetNextVal(string t)
    30         {
    31             int j = 0, k = -1;
    32             int[] nextVal = new int[t.Length];
    33 
    34             nextVal[0] = -1;
    35 
    36             while (j < t.Length - 1)
    37             {
    38                 if (k == -1 || t[j] == t[k])
    39                 {
    40                     j++;
    41                     k++;
    42                     if (t[j] != t[k])
    43                     {
    44                         nextVal[j] = k;
    45                     }
    46                     else
    47                     {
    48                         nextVal[j] = nextVal[k];
    49                     }
    50                 }
    51                 else
    52                 {
    53                     k = nextVal[k];
    54                 }
    55             }
    56 
    57             return nextVal;
    58         }
    View Code

    这种实现比我上面的实现,性能要高出三倍,原因在与,它生成“Next特征数组”(网上有资料这么叫的)只用了一个循环,而我的用了三个循环,貌似最后那个数组值也不一样,没看懂他的思路是怎么回事,如有懂的,请指点下,谢谢!测试代码下载:http://files.cnblogs.com/joey0210/ArithmeticSolution.rar

  • 相关阅读:
    类型初始值设定项引发异常的解决方法
    sql修改排序规则,区分大小
    SQLServer查询所有子节点
    Cannot resolve the collation conflict between "Chinese_PRC_CI_AS" and "SQL_L及由于排序规则不同导致查询结果为空的问题
    SQLServer跨库查询--分布式查询
    DataTable对象的操作问题
    .Net插入大批量数据
    SQL修改字段类型
    数据抓包分析
    Qss 皮肤
  • 原文地址:https://www.cnblogs.com/joey0210/p/3247603.html
Copyright © 2020-2023  润新知