• Seaborn可视化常见操作


    主要是Seaborn常见的操作

    • Seaborn 基础用法
    import seaborn as sns
    import numpy as np
    
    import matplotlib.pyplot as plt
    
    
    def sinplot(flip=1):
        x = np.linspace(0, 14, 100)
        for i in range(1, 7):
            plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)
    
    # 5种 主题风格
    # darkgrid
    # whitegrid
    # dark
    # white
    # ticks
    # sns.set()
    # sinplot()
    
    # sns.set_style('whitegrid')
    data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
    #
    # sns.boxplot(data = data)
    # sns中 ticks 风格, 可以把上面和右边刻度去掉
    # sns.set_style('ticks')
    # sinplot()
    # sns.despine()
    
    # 设置离x轴的距离
    # sns.violinplot(data)
    # sns.despine(offset=30)
    
    # 保留x轴或者y轴
    # sns.set_style('whitegrid')
    # data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
    # sns.boxplot(data = data, palette='deep')
    # sns.despine(left=True)
    
    # 指定风格, 可以使用with
    # with sns.axes_style('darkgrid'):
    #     plt.subplot(211)
    #     sinplot()
    # plt.subplot(212)
    # sinplot(-1)
    
    # 大小风格
    # sns.set()
    # sns.set_context('paper')
    # plt.figure(figsize=(8, 6))
    # sinplot()
    
    # sns.set()
    # sns.set_context('talk')
    # plt.figure(figsize=(8, 6))
    # sinplot()
    #
    # sns.set()
    # sns.set_context('poster')
    # plt.figure(figsize=(8, 6))
    # sinplot()
    # font_scale 字体 后面是线条
    sns.set_context('notebook', font_scale=1.5, rc={'lines.linewidth': 4.5})
    sinplot()
    
    • 颜色的相关设定
    import seaborn as sns
    import numpy as np
    import matplotlib.pyplot as plt
    sns.set(rc={'figure.figsize': (6, 6)})
    
    # 调色板
    # 颜色很重要
    
    # 分类色板, 默认提供六个颜色
    # current_palette = sns.color_palette()
    # sns.palplot(current_palette)
    
    # 当颜色超过6个, 需要提供一些圆形画板
    # 最常用的颜色空间是使用hls颜色空间
    # sns.palplot(sns.color_palette('hls', 8))
    #
    # data = np.random.normal(size=(20, 8)) + np.arange(8) / 2
    # sns.set()
    # sns.boxplot(data=data, palette=sns.color_palette('hls', 8))
    
    # hls_palette() 函数是用来控制亮度和饱和度
    # l - 亮度  s- 饱和度
    # sns.palplot(sns.hls_palette(8, l=.7, s=.9))
    sns.palplot(sns.color_palette('Paired', 10))
    
    • 单变量绘图
    import seaborn as sns
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from scipy import stats, integrate
    
    
    sns.set(color_codes=True)
    np.random.seed(sum(map(ord, 'distributions')))
    
    # x = np.random.normal(size=100)
    # #sns.distplot(x, kde=False)
    # # sns.distplot(x, kde=False, bins=20)
    #
    # # 数据分布
    # x = np.random.gamma(6, size=200)
    # sns.distplot(x, kde=False, fit=stats.gamma)
    #
    # # 根据均值和方差生成数据
    # mean, cov = [0, 1],[(1, .5), (.5, 1)]
    #
    # data = np.random.multivariate_normal(mean, cov, 200)
    # df = pd.DataFrame(data, columns=['x', 'y'])
    # print(df)
    #
    # # 观察两个变量之间的关系最好用散点图
    # sns.jointplot(x='x', y='y', data=df)
    #
    # # 另外一种方式
    # with sns.axes_style('white'):
    #     sns.jointplot(x='x', y='y', kind='hex', data=df)
    
    
    • 多变量绘图
    # iris = sns.load_dataset('iris')
    # sns.pairplot(iris)
    
    # 回归分析绘图
    
    import seaborn as sns
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    sns.set(color_codes=True)
    np.random.seed(sum(map(ord, 'distributions')))
    
    titanic = sns.load_dataset('titanic')
    iris = sns.load_dataset('iris')
    tips = pd.read_csv('tips.csv', delimiter='	')
    
    # sns.stripplot(x='day', y='total_bill', data=tips)
    
    # 如果数据量过大,加上参数
    # sns.stripplot(x='day', y='total_bill', data=tips, jitter=True)
    
    # sns.swarmplot(x='day', y='total_bill', data=tips)
    
    # 加上属性值
    
    # sns.swarmplot(x='day', y='total_bill', data=tips, hue='sex')
    # sns.swarmplot(x='day', y='total_bill', data=tips, hue='time')
    
    # 盒图
    # sns.boxplot(x='day', y='total_bill', data=tips, hue='time')
    # 小提琴图
    # sns.violinplot(x='day', y='total_bill', data=tips, hue='time')
    # sns.violinplot(x='day', y='total_bill', data=tips, hue='time', split=True)
    
    # 显示值的集中趋势
    # sns.boxplot(x='sex', y='survived', hue='class', data=titanic)
    
    # 点图可以更好的描述变化差异
    # sns.pointplot(x='sex', y='survived', hue='class', data=titanic)
    
    # sns.pointplot(x='class', y='survived', hue='sex', data=titanic, palette={'male': 'g', 'female':'m'},
    #               markers=["^", "o"], linestyles=['-', '--'])
    
    
    # 宽性数据
    # sns.boxplot(data=iris, orient='h')
    
    # 多层面板分类图
    # sns.factorplot(x='day', y='total_bill', hue='smoker', data=tips)
    # sns.factorplot(x='day', y='total_bill', hue='smoker', data=tips, kind='swarm')
    # sns.factorplot(x='day', y='total_bill', hue='smoker', data=tips, kind='bar')
    
    • FacetGrid绘图使用方法
    import seaborn as sns
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    sns.set(color_codes=True)
    np.random.seed(sum(map(ord, 'distributions')))
    
    titanic = sns.load_dataset('titanic')
    iris = sns.load_dataset('iris')
    tips = pd.read_csv('tips.csv', sep='	')
    print(tips.head())
    
    # g = sns.FacetGrid(tips, col='time')
    # g.map(plt.hist, 'tip')
    # g = sns.FacetGrid(tips, col='sex', hue='smoker')
    # g.map(plt.scatter, 'total_bill', 'tip', alpha=.7)
    # g.add_legend()
    
    # g = sns.FacetGrid(tips, row='smoker', col='time', margin_titles=True)
    # g.map(sns.regplot, 'size', 'total_bill', color='.3', fit_reg=False, x_jitter=.1)
    
    # g = sns.FacetGrid(tips, col='day', size=4, aspect=.5)
    # g.map(sns.barplot, 'sex', 'total_bill')
    # from pandas import Categorical
    # ordered_days = tips.day.value_counts().index
    # print(ordered_days)
    # ordered_days = Categorical(['Thur', 'Fri','Sat', 'Sun'])
    # print(ordered_days)
    #
    # g = sns.FacetGrid(tips, row='day', row_order=ordered_days, size=1.7, aspect=4)
    # g.map(sns.boxplot, 'total_bill')
    
    # 使用FaceGrid 绘制多变量
    # pal = dict(Lunch = 'seagreen', Dinner='gray')
    # g = sns.FacetGrid(tips, hue='time', palette=pal, size=5)
    # g.map(plt.scatter, 'total_bill', 'tip', s=50, alpha=.7, linewidth=.5, edgecolor='white')
    # g.add_legend()
    
    # g = sns.FacetGrid(tips, hue='sex', palette='Set1', size=5, hue_kws={'marker': ['^', 'v']})
    # g.map(plt.scatter, 'total_bill', 'tip', s=100, linewidth=.5, edgecolor='white')
    # g.add_legend()
    
    # 改变x轴和y轴的坐标
    # with sns.axes_style('white'):
    #     g = sns.FacetGrid(tips, row='sex', col='smoker', margin_titles=True, size=2.5)
    # g.map(plt.scatter, 'total_bill', 'tip', color='#334488', edgecolor='white', lw=.5)
    # g.set_axis_labels('Total bill US Dollars', 'Tip')
    # g.set(xticks=[10, 30, 50], yticks=[2, 6, 10])
    # g.fig.subplots_adjust(wspace=.02, hspace=.02)
    
    
    # 对图
    iris = sns.load_dataset('iris')
    # g = sns.PairGrid(iris)
    # g.map(plt.scatter)
    
    # 对角线上画图
    # g = sns.PairGrid(iris, hue='species')
    # g.map_diag(plt.hist)
    # g.map_offdiag(plt.scatter)
    # g.add_legend()
    
    
    # 画部分特征
    # print(iris)
    # g = sns.PairGrid(iris, vars=['sepal_length', 'sepal_width'], hue='species')
    # g.map(plt.scatter)
    
    # 加上颜色
    g = sns.PairGrid(tips, hue='size', palette='GnBu_d')
    g.map(sns.scatterplot, s=50, edgecolor='white')
    g.add_legend()
    
    • 热力图的绘制
    import seaborn as sns
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    
    sns.set()
    np.random.seed(0)
    uniform_data = np.random.rand(3, 3)
    print(uniform_data)
    # heatmap = sns.heatmap(uniform_data)
    # 取最大值和最小值
    # heatmap = sns.heatmap(uniform_data, vmin=0.2, vmax=0.5)
    
    
    # 对于上下不同的值, 可以使用center
    # normal_data = np.random.randn(3, 3)
    # print(normal_data)
    # ax = sns.heatmap(normal_data, center=0)
    
    flights = pd.read_csv('flights.csv')
    print(flights.head())
    
    flights = flights.pivot('month', 'year', 'passengers')
    print(flights)
    # ax = sns.heatmap(flights)
    
    # 热力图的一些参数
    
    # ax = sns.heatmap(flights, annot=True, fmt='d')
    
    # ax = sns.heatmap(flights,linewidths=.5)
    
    # 调色盘
    # ax = sns.heatmap(flights, cmap='YlGnBu', linewidths=.5)
    
    # 可以隐藏cbar
    ax = sns.heatmap(flights, cbar=False)
    plt.show()
    
  • 相关阅读:
    [整理]修改git 默认编辑器为vim
    [转]如何清空Chrome缓存和Cookie
    [整理]docker内部时区修改的两种方法
    [译]10个有关SCP的命令
    [译]在python中如何有效的比较两个无序的列表是否包含完全同样的元素(不是set)?
    通过设计表快速了解sql语句中字段的含义
    [整理]什么是排序算法的稳定性,为什么它很重要?
    pyinstaller打包自己的python程序
    [问题解决]ps aux中command命令相同,如何找出自己要的进程号?
    [常识]Windows系统里休眠和睡眠的区别?
  • 原文地址:https://www.cnblogs.com/jly1/p/13049673.html
Copyright © 2020-2023  润新知