• hdu5381 The sum of gcd]莫队算法


    题意:http://acm.hdu.edu.cn/showproblem.php?pid=5381

    思路:这个题属于没有修改的区间查询问题,可以用莫队算法来做。首先预处理出每个点以它为起点向左和向右连续一段的gcd发生变化的每个位置,不难发现对每个点A[i],这样的位置最多logA[i]个,这可以利用ST表用nlognlogA[i]的时间预处理,然后用二分+RMQ在nlogn的时间内得到。然后就是区间变化为1时的转移了,不难发现区间变化为1时,变化的答案仅仅是以变化的那一个点作为左端点或右端点的连续子串的gcd的和,而这个gcd最多logA[i]种,利用前面的预处理可以在logA[i]的时间内累加得到答案。总复杂度O(NlogNlogA[i]+N√NlogA[i])

      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    #include <map>
    #include <set>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    #define X                   first
    #define Y                   second
    #define pb                  push_back
    #define mp                  make_pair
    #define all(a)              (a).begin(), (a).end()
    #define fillchar(a, x)      memset(a, x, sizeof(a))
    #define copy(a, b)          memcpy(a, b, sizeof(a))
    
    typedef long long ll;
    typedef pair<int, int> pii;
    typedef unsigned long long ull;
    
    //#ifndef ONLINE_JUDGE
    void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
    void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
    void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
    while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
    void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
    void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
    void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
    //#endif
    template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
    template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
    
    const double PI = acos(-1.0);
    const int INF = 1e9 + 7;
    const double EPS = 1e-8;
    
    /* -------------------------------------------------------------------------------- */
    
    const int maxn = 1e4 + 7;
    
    int gcd(int a, int b) {
        return b? gcd(b, a % b) : a;
    }
    
    struct ST {
        int dp[maxn][20];
        int index[maxn];
        void init_index() {
            index[1] = 0;
            for (int i = 2; i < maxn; i ++) {
                index[i] = index[i - 1];
                if (!(i & (i - 1))) index[i] ++;
            }
        }
        void init_gcd(int a[], int n) {
            for (int i = 0; i < n; i ++) dp[i][0] = a[i];
            for (int j = 1; (1 << j) <= n; j ++) {
                for (int i = 0; i + (1 << j) - 1 < n; i ++) {
                    dp[i][j] = gcd(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
                }
            }
        }
    
        int query_gcd(int L, int R) {
            int p = index[R - L + 1];
            return gcd(dp[L][p], dp[R - (1 << p) + 1][p]);
        }
    };
    ST st;
    
    int n, q, block;
    int a[maxn];
    vector<int> L[maxn], R[maxn];
    pair<pii, int> b[maxn];
    
    bool cmp(const pair<pii, int> &a, const pair<pii, int> &b) {
        int lb = a.X.X / block, rb = b.X.X / block;
        return lb == rb? a.X.Y < b.X.Y : lb < rb;
    }
    
    void init() {
        for (int i = 0; i < n; i ++) {
            L[i].clear();
            R[i].clear();
        }
        for (int i = 0; i < n; i ++) {
            int u = i;
            R[i].pb(i - 1);
            while (u < n) {
                int l = u, r = n - 1;
                while (l < r) {
                    int m = (l + r + 1) >> 1;
                    if (st.query_gcd(i, m) == st.query_gcd(i, u)) l = m;
                    else r = m - 1;
                }
                u = l + 1;
                R[i].pb(l);
            }
        }
        for (int i = 0; i < n; i ++) {
            int u = i;
            L[i].pb(i + 1);
            while (u >= 0) {
                int l = 0, r = u;
                while (l < r) {
                    int m = (l + r) >> 1;
                    if (st.query_gcd(m, i) == st.query_gcd(u, i)) r = m;
                    else l = m + 1;
                }
                u = l - 1;
                L[i].pb(l);
            }
        }
    }
    
    ll f(int l, int r) {
        ll ans = 0;
        for (int i = 1; i < R[l].size(); i ++) {
            if (r <= R[l][i]) return ans + (ll)(r - R[l][i - 1]) * st.query_gcd(l, r);
            ans += (ll)(R[l][i] - R[l][i - 1]) * st.query_gcd(l, R[l][i]);
        }
    }
    
    ll g(int l, int r) {
        ll ans = 0;
        for (int i = 1; i < L[r].size(); i ++) {
            if (l >= L[r][i]) return ans + (ll)(L[r][i - 1] - l) * st.query_gcd(l, r);
            ans += (ll)(L[r][i - 1] - L[r][i]) * st.query_gcd(L[r][i], r);
        }
    }
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
    #endif // ONLINE_JUDGE
        int T;
        cin >> T;
        st.init_index();
        while (T --) {
            cin >> n;
            block = (int)sqrt(n + 0.1);
            for (int i = 0; i < n; i ++) {
                scanf("%d", a + i);
            }
            st.init_gcd(a, n);
            init();
            cin >> q;
            for (int i = 0; i < q; i ++) {
                scanf("%d%d", &b[i].X.X, &b[i].X.Y);
                b[i].X.X --;
                b[i].X.Y --;
                b[i].Y = i;
            }
            sort(b, b + q, cmp);
            vector<ll> ans(q);
            ll lastans = a[0];
            int lastl = 0, lastr = 0;
            /** 注意区间变化的顺序,优先考虑扩大区间,保证任何时刻区间不为负 */
            for (int i = 0; i < q; i ++) {
                while (lastl > b[i].X.X) {
                    lastl --;
                    lastans += f(lastl, lastr);
                }
                while (lastr < b[i].X.Y) {
                    lastr ++;
                    lastans += g(lastl, lastr);
                }
                while (lastl < b[i].X.X) {
                    lastans -= f(lastl, lastr);
                    lastl ++;
                }
                while (lastr > b[i].X.Y) {
                    lastans -= g(lastl, lastr);
                    lastr --;
                }
                ans[b[i].Y] = lastans;
            }
            for (int i = 0; i < q; i ++) {
                printf("%I64d
    ", ans[i]);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    newcoder 筱玛的迷阵探险(搜索 + 01字典树)题解
    str&repr的使用&format模板的自定义
    内置函数的补充与getattrebuit & item系列
    python几种常用模块
    面向对象的反射&动态导入模块
    面向对象的封装&定制数据类型
    面向对象的多态
    面向对象的继承
    面向对象的属性与方法
    面向对象的属性及类的增删改查
  • 原文地址:https://www.cnblogs.com/jklongint/p/4731996.html
Copyright © 2020-2023  润新知