1.前言
异步这概念刚开始接触的时候,不是那么容易接受,但是需要用的地方还真的挺多的,刚学习的时候,也很懵逼走了不少弯路,所以这里有必要总结一下。
msdn文档:https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/
官方的简介:
*.NET Framework提供了执行异步操作的三种模式:
异步编程模型(APM)模式(也称为IAsyncResult的模式),其中异步操作要求Begin和End方法(例如,BeginWrite和EndWrite异步写入操作)。这种模式不再被推荐用于新开发。有关更多信息,请参阅异步编程模型(APM)。
基于事件的异步模式(EAP),它需要一个具有Async后缀的方法,并且还需要一个或多个事件,事件处理程序委托类型和被EventArg派生类型。EAP在.NET Framework 2.0中引入。不再推荐新的开发。有关更多信息,请参阅基于事件的异步模式(EAP)。
基于任务的异步模式(TAP),它使用单一方法来表示异步操作的启动和完成。TAP在.NET Framework 4中引入,是.NET Framework中推荐的异步编程方法。C#中的async和等待关键字,Visual BasiC语言中的Async和Await运算符为TAP添加语言支持。有关更多信息,请参阅基于任务的异步模式(TAP)。*
2.异步的应用场景
在计算机程序的运行中,计算是需要一定的时间的,在运算时间过长的任务时,比如上传大文件,客户端请求数据,读取文件流等,如果是同步(synvronous)必须等待该任务执行完成才能继续下一个任务。使用异步(asynchronous)操作,会开启新的线程,不会等待异步操作完成才去执行后面的程序,相比异步编程优点:1.就是出现长时间处理程序时,不会卡界面,用户仍然可以操作UI界面2.提高程序运行效率,节约CPU资源,提供系统吞吐量。
3.进程和线程的关系
这个面试的时候基本上都会问到,简而言之就是:
一个程序都会有一个进程和一个线程,进程是由CPU进行调度分配资源的,有一个完整的虚拟地址空间,不依赖线程独立存在,反之线程是由进程来调度分配的,只是进程的一部分,没有自己的地址空间,与进程内的其他线程一起共享该进程的所有资源。打个简单的比方就像是线程就好比是人体的寄生虫,不能独立存在,必须依靠人(进程)的营养(资源)来生存(执行)
4.异步和多线程的区别
异步是相对同步而言的,我们知道异步是开启了新线程,但是和多线程不是一个概念,异步相当于一个人的“大脑”能够做试卷,又能够看电影,同时处理两件以上不同的事情。多线程好比多个人做不同的事情。
5.C#异步方式之一( BeginInvoke、EndInvoke方法)
方式1:使用回调方法完成异步委托
先来看个例子,委托的异步调用,这个例子首先定义一个string类型的返回值、string类型的参数的委托。虽然这中模式不推荐被使用。
class Program { delegate string SayHi(string name);//定义委托 static void Main(string[] args) { SayHi sayhi = new SayHi(SayHiName);//实例化委托 sayhi("科比");//一般的直接调用 sayhi.Invoke("张林");//使用Invoke方法同步调用 //异步调用 sayhi.BeginInvoke("杜兰特", (IAsyncResult ar) => { sayhi.EndInvoke(ar); Console.WriteLine("打招呼成功结束"); }, null); } public static string SayHiName(string name) { return "how are you"+name + "?"; } }
前两种调用委托的方式都是同步的,BeginInvoke方法的返回值是IAsyncResult类型的
该方法的参数由两部分组成,前面(n)个参数是委托的参数,倒数第二个参数也表示一个委托,该委托是.net系统定义的委托(和func、action类似),查看AsyncCallback的定义如图:
作用就是:作为执行调用的回调方法,值得注意的是,在回调方法中,必须调用EndInvoke方法结束异步调用,EndInvoke是获取异步调用的结果
上面的例子调试的结果如图:
方式2:使用轮询
我们把BeginInvoke的委托参数为null,使用轮询的方式
Func<string, string> func = delegate (string name) { Thread.Sleep(2000); return "how are you" + name + ""; }; IAsyncResult ar = func.BeginInvoke("张林",null,null); int i = 1; while (!ar.IsCompleted) { Console.WriteLine(200*i); i++; Thread.Sleep(200); } string result = func.EndInvoke(ar); Console.WriteLine(result);
结果如图:
6.C#异步方式之二 await async
async和await是一对关键字,它是.net 4.5的特性。在实际工作中使用方便灵活,主要原因就是可以像写同步方法那样去异步编程,代码结构清晰,不用关心如何实现异步的编程。
这里其实要注意的是,之前刚说了异步是开启新的线程来实现的,但是await 和async两个关键字并没有开启新的线程,为了证明这一点,下面建了一个winform的程序,异步获取图片并显示到picturebox上。
public Form1() { InitializeComponent(); this.label1.Text = "主线程Id:"+Thread.CurrentThread.ManagedThreadId; } private async void button1_Click(object sender, EventArgs e) { string imageUrl = "https://ss0.baidu.com/6ONWsjip0QIZ8tyhnq/it/u=3850265187,1181041963&fm=173&s=62E19A4722716A371EB097FB03009015&w=218&h=146&img.JPEG"; HttpClient client = new HttpClient(); var response =await client.GetAsync(imageUrl); if (response.StatusCode == System.Net.HttpStatusCode.OK) { var stream =await response.Content.ReadAsStreamAsync(); Image image = Bitmap.FromStream(stream,true); this.label2.Text = "线程Id:" + Thread.CurrentThread.ManagedThreadId; this.pictureBox1.BackgroundImage = image; } }
其实不用看图就已经知道答案了,程序运行时不报异常,就已经说明一点:await async两个关键根本创建新的线程。这个涉及到异步更新UI到主线程,就不多说了。
结果如图:
async await方法的使用说明:
- 返回类型: void 、Task、Task<泛型类型>
- async、await不会创建新的线程,实现等待的效果,必须同时使用
- 使用该方法的方法主体也要用async关键字
异步方法事例:
private static async Task<int> GetValueAsync(int a) { //Task.run 开启了新的线程 await Task.Run(() => { Thread.Sleep(2000); //模拟耗时 Console.WriteLine("GetValueAsync方法结束,线程ID:" + Thread.CurrentThread.ManagedThreadId); return a * a; }); Console.WriteLine("线程ID:" + Thread.CurrentThread.ManagedThreadId+"异步方法结束"); return a * a; }
调用异步方法:
private async void button1_Click(object sender, EventArgs e) { int result =await GetValueAsync(5); this.label1.Text = "异步计算的结果" + result + "线程ID:" + Thread.CurrentThread.ManagedThreadId; }
7.C#异步方式之三 浅谈Task
前面刚刚了解到async await是.net 4.5出的特性,Task是.net4.0新出的特性,用来处理异步编程的,其实我们要知道真正实现的异步操作还是Task新增线程来实现的,但是不代表说开一个Task,就开一个线程,有可能是几个Task在一个线程上运行的,他们并不是一一对应的关系,充分利用线程,下面的事例就已经能够说明这一点
Task创建
Task创建有两种方式一种通过任务工厂赋值立即运行,一种是直接实例化。下面这个例子创建了10个Task
static void Main(string[] args) { //启用线程池中的线程异步执行 Task t1 = Task.Factory.StartNew(() => { Console.WriteLine("Task1启动...线程ID:"+Thread.CurrentThread.ManagedThreadId); }); Task t2 = Task.Factory.StartNew(() => { Console.WriteLine("Task2启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); //new 实例化启动 Task t3 = new Task(() => { Console.WriteLine("Task3启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); t3.Start(); Task t4 = Task.Factory.StartNew(() => { Console.WriteLine("Task4启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); Task t5 = Task.Factory.StartNew(() => { Console.WriteLine("Task5启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); Task t6 = Task.Factory.StartNew(() => { Console.WriteLine("Task6启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); Task t7 = Task.Factory.StartNew(() => { Console.WriteLine("Task7启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); Task t8 = Task.Factory.StartNew(() => { Console.WriteLine("Task8启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); Task t9 = Task.Factory.StartNew(() => { Console.WriteLine("Task9启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); Task t10 = Task.Factory.StartNew(() => { Console.WriteLine("Task10启动...线程ID:" + Thread.CurrentThread.ManagedThreadId); }); Console.ReadLine(); }
创建的10个Task,我们从结果中也证明了Task和线程并不是一一对应的关系,结果如图:
Task构造函数
Task状态
我们创建一个task,调用他的Start、Wait方法
static void Main(string[] args) { var task = new Task(()=> { Console.WriteLine("Task创建成功"); }); Console.WriteLine("task未开始:"+task.Status); task.Start(); Console.WriteLine("task已经开始:"+task.Status); task.Wait(); Console.WriteLine("task已经等待:"+task.Status); }
结果如图:
我们从图中可以知道,Task的生命周期如下:
Created:在已经实例化未Start之前的状态
WaittingToRun:表示等待分配线程给Task执行
RanToCompletion:任务执行完毕
Task等待任务结果
1.Task.WaitAll从这个字面意思就知道等待所有任务执行完成,和上面例子Wait方法等待一个任务执行完成很相似,我们来看一个代码:
var task1 = new Task(() => { System.Threading.Thread.Sleep(3000); Console.WriteLine("task1Created"); }); var task2 = new Task(() => { System.Threading.Thread.Sleep(3000); Console.WriteLine("task2Created"); }); task1.Start(); task2.Start(); Task.WaitAll(task1, task2); Console.WriteLine("所有任务执行完!"); Console.Read();
结果输出:
task1Created
task2Created
所有任务执行完
除了WaitAll方法还有这些常用的方法
- Task.WaitAny:等待任何一个任务向下执行
- Task.ContinueWith等待第一个Task完成自动启动,触发下一个Task,也就是当做任务完成时触发的回调方法
- Task.GetAwaiter().OnCompleted(Action action) :GetAwaiter 方法获取任务的等待者,调用OnCompleted事件,任务完成时触发
Task任务取消
static void Main(string[] args) { var source = new CancellationTokenSource(); var token = source.Token; Task t1 = Task.Run(() => { Thread.Sleep(2000); if (token.IsCancellationRequested) { Console.WriteLine("任务已取消"); } Thread.Sleep(1000); },token); Console.WriteLine(t1.Status); //取消任务 source.Cancel(); Console.WriteLine(t1.Status); Console.ReadLine(); }
结果如图:
总结:
纸上得来终觉浅,绝知此事要躬行。很多实际的异步问题还是需要在实践中去体会,实践是检验真理的唯一标准。
原文标题:C#异步编程基础入门总结
作者:张林
原文链接:http://blog.csdn.net/kebi007/article/details/76899078