• python--9、并发之多进程应用


    multiprocessing模块

        想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。Python提供了multiprocessing。
        multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。

      multiprocessing模块的功能众多:支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。

        需要再次强调的一点是:与线程不同,进程没有任何共享状态,进程修改的数据,改动仅限于该进程内。

    Process类

        创建进程的类

    Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)
    
    强调:
    1. 需要使用关键字的方式来指定参数
    2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号

    参数:
     group参数未使用,值始终为None
    
     target表示调用对象,即子进程要执行的任务
    
     args表示调用对象的位置参数元组,args=(1,2,'egon',)
    
     kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}
    
     name为子进程的名称

    方法
    p.start():启动进程,并调用该子进程中的p.run() p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁 p.is_alive():如果p仍然运行,返回True p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程

    属性:
    p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
    p.name:进程的名称
    p.pid:进程的pid
    p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
    p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解)

    Process类的使用

    在Windows中使用时必须放到if __name__ == '__main__里

    创建并开启子进程的两种方式

    #开进程的方法一:
    import time
    import random
    from multiprocessing import Process
    def piao(name):
        print('%s piaoing' %name)
        time.sleep(random.randrange(1,5))
        print('%s piao end' %name)
    p1=Process(target=piao,args=('egon',)) #必须加,号
    p2=Process(target=piao,args=('alex',))
    p3=Process(target=piao,args=('wupeqi',))
    p4=Process(target=piao,args=('yuanhao',))
    
    p1.start()
    p2.start()
    p3.start()
    p4.start()
    print('主线程')
    #开进程的方法二:
    import time
    import random
    from multiprocessing import Process
    
    
    class Piao(Process):
        def __init__(self,name):
            super().__init__()
            self.name=name
        def run(self):
            print('%s piaoing' %self.name)
    
            time.sleep(random.randrange(1,5))
            print('%s piao end' %self.name)
    
    p1=Piao('egon')
    p2=Piao('alex')
    p3=Piao('wupeiqi')
    p4=Piao('yuanhao')
    
    p1.start() #start会自动调用run
    p2.start()
    p3.start()
    p4.start()
    print('主线程')

    进程直接的内存空间是隔离的

    Process对象的join方法
    from multiprocessing import Process
    import time
    import random
    
    class Piao(Process):
        def __init__(self,name):
            self.name=name
            super().__init__()
        def run(self):
            print('%s is piaoing' %self.name)
            time.sleep(random.randrange(1,3))
            print('%s is piao end' %self.name)
    
    
    p=Piao('egon')
    p.start()
    p.join(0.0001) #等待p停止,等0.0001秒就不再等了
    print('开始')


    守护进程

    主进程创建守护进程

      其一:守护进程会在主进程代码执行结束后就终止

      其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

    注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

    进程同步(锁)

    进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,

    竞争带来的结果就是错乱,如何控制,就是加锁处理

    part1:多个进程共享同一打印终端

    part2:多个进程共享同一文件

    加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
    虽然可以用文件共享数据实现进程间通信,但问题是:
    1.效率低(共享数据基于文件,而文件是硬盘上的数据)
    2.需要自己加锁处理
    
    
    总结:
    因此最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
    1 队列和管道都是将数据存放于内存中
    2 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
    我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
    
    
  • 相关阅读:
    Django数据库 相关之select_related/prefetch_related
    Django 序列化
    Django 信号
    Django缓存配置和使用
    Django FBV/CBV、中间件、GIT使用
    学员管理系统(SQLAlchemy 实现)
    Oracle的三种高可用集群方案
    linux系统安装硬盘分区建议
    Linux下expdp自动备份
    impdp导入报错ORA-39070:无法打开日志文件
  • 原文地址:https://www.cnblogs.com/jinyudong/p/7857889.html
Copyright © 2020-2023  润新知