• Pytorch Batch Normalization 中 track_running_stats问题


    Batch Normalization

    Batch Normalization(简称为BN)[2],中文翻译成批规范化,是在深度学习中普遍使用的一种技术,通常用于解决多层神经网络中间层的协方差偏移(Internal Covariate Shift)问题,类似于网络输入进行零均值化和方差归一化的操作,不过是在中间层的输入中操作而已,具体原理不累述了,见[2-4]的描述即可。

    在BN操作中,最重要的无非是这四个式子:

    注意到这里的最后一步也称之为仿射(affine),引入这一步的目的主要是设计一个通道,使得输出output至少能够回到输入input的状态(当γ=1,β=0时)使得BN的引入至少不至于降低模型的表现,这是深度网络设计的一个套路。
    整个过程见流程图,BN在输入后插入,BN的输出作为规范后的结果输入的后层网络中。
    好了,这里我们记住了,在BN中,一共有这四个参数我们要考虑的:
    • γ,β:分别是仿射中的weightbias,在pytorch中用weightbias表示。
    • μB:和上面的参数不同,这两个是根据输入的batch的统计特性计算的,严格来说不算是“学习”到的参数,不过对于整个计算是很重要的。在pytorch中,这两个统计参数,用running_meanrunning_var表示[5],这里的running指的就是当前的统计参数不一定只是由当前输入的batch决定,还可能和历史输入的batch有关,详情见以下的讨论,特别是参数momentum那部分。

    Update 2020/3/16:
    因为BN层的考核,在工作面试中实在是太常见了,在本文顺带补充下BN层的参数的具体shape大小。
    以图片输入作为例子,在pytorch中即是nn.BatchNorm2d(),我们实际中的BN层一般是对于通道进行的,举个例子而言,我们现在的输入特征(可以视为之前讨论的batch中的其中一个样本的shape)为(其中C是通道数,W是width,H是height),那么我们的,而方差。而仿射weight,以及bias,

    我们会发现,这些参数,无论是学习参数还是统计参数都会通道数有关,其实在pytorch中,通道数的另一个称呼是num_features,也即是特征数量,因为不同通道的特征信息通常很不相同,因此需要隔离开通道进行处理。

    有些朋友可能会认为这里的weight应该是一个张量,而不应该是一个矢量,其实不是的,这里的weight其实应该看成是 对输入特征图的每个通道得到的归一化后的xˆ进行尺度放缩的结果,因此对于一个通道数为C的输入特征图,那么每个通道都需要一个尺度放缩因子,同理,bias也是对于每个通道而言的。这里切勿认为这一步是一个全连接层,他其实只是一个尺度放缩而已。关于这些参数的形状,其实可以直接从pytorch源代码看出,这里截取了_NormBase层的部分初始代码,便可一见端倪。

    class _NormBase(Module):
        """Common base of _InstanceNorm and _BatchNorm"""
        _version = 2
        __constants__ = ['track_running_stats', 'momentum', 'eps',
                         'num_features', 'affine']
    
        def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
                     track_running_stats=True):
            super(_NormBase, self).__init__()
            self.num_features = num_features
            self.eps = eps
            self.momentum = momentum
            self.affine = affine
            self.track_running_stats = track_running_stats
            if self.affine:
                self.weight = Parameter(torch.Tensor(num_features))
                self.bias = Parameter(torch.Tensor(num_features))
            else:
                self.register_parameter('weight', None)
                self.register_parameter('bias', None)
            if self.track_running_stats:
                self.register_buffer('running_mean', torch.zeros(num_features))
                self.register_buffer('running_var', torch.ones(num_features))
                self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
            else:
                self.register_parameter('running_mean', None)
                self.register_parameter('running_var', None)
                self.register_parameter('num_batches_tracked', None)
            self.reset_parameters()

    在Pytorch中使用

     Pytorch中的BatchNorm的API主要有:

    torch.nn.BatchNorm1d(num_features, 
                         eps=1e-05, 
                         momentum=0.1, 
                         affine=True, 
                         track_running_stats=True) 

    一般来说pytorch中的模型都是继承nn.Module类的,都有一个属性trainning指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层或者Dropout层。通常用model.train()指定当前模型model为训练状态,model.eval()指定当前模型为测试状态。
    同时,BN的API中有几个参数需要比较关心的,一个是affine指定是否需要仿射,还有个是track_running_stats指定是否跟踪当前batch的统计特性。容易出现问题也正好是这三个参数:trainningaffinetrack_running_stats

    • 其中的affine指定是否需要仿射,也就是是否需要上面算式的第四个,如果affine=False,则γ=1,β=0,并且不能学习被更新。一般都会设置成affine=True[10]
    • trainningtrack_running_statstrack_running_stats=True表示跟踪整个训练过程中的batch的统计特性,得到方差和均值,而不只是仅仅依赖与当前输入的batch的统计特性。相反的,如果track_running_stats=False那么就只是计算当前输入的batch的统计特性中的均值和方差了。当在推理阶段的时候,如果track_running_stats=False,此时如果batch_size比较小,那么其统计特性就会和全局统计特性有着较大偏差,可能导致糟糕的效果。

    一般来说,trainningtrack_running_stats有四种组合[7]

    1. trainning=True, track_running_stats=True。这个是期望中的训练阶段的设置,此时BN将会跟踪整个训练过程中batch的统计特性。
    2. trainning=True, track_running_stats=False。此时BN只会计算当前输入的训练batch的统计特性,可能没法很好地描述全局的数据统计特性。
    3. trainning=False, track_running_stats=True。这个是期望中的测试阶段的设置,此时BN会用之前训练好的模型中的(假设已经保存下了)running_meanrunning_var并且不会对其进行更新。一般来说,只需要设置model.eval()其中model中含有BN层,即可实现这个功能。[6,8]
    4. trainning=False, track_running_stats=False 效果同(2),只不过是位于测试状态,这个一般不采用,这个只是用测试输入的batch的统计特性,容易造成统计特性的偏移,导致糟糕效果。

    同时,我们要注意到,BN层中的running_meanrunning_var的更新是在forward()操作中进行的,而不是optimizer.step()中进行的,因此如果处于训练状态,就算你不进行手动step(),BN的统计特性也会变化的。如 

    model.train() # 处于训练状态
    
    for data, label in self.dataloader:
        pred = model(data)  
        # 在这里就会更新model中的BN的统计特性参数,running_mean, running_var
        loss = self.loss(pred, label)
        # 就算不要下列三行代码,BN的统计特性参数也会变化
        opt.zero_grad()
        loss.backward()
        opt.step()

    这个时候要将model.eval()转到测试阶段,才能固定住running_meanrunning_var。有时候如果是先预训练模型然后加载模型,重新跑测试的时候结果不同,有一点性能上的损失,这个时候十有八九是trainningtrack_running_stats设置的不对,这里需要多注意。 [8]

    假设一个场景,如下图所示:

    此时为了收敛容易控制,先预训练好模型model_A,并且model_A内含有若干BN层,后续需要将model_A作为一个inference推理模型和model_B联合训练,此时就希望model_A中的BN的统计特性值running_meanrunning_var不会乱变化,因此就必须将model_A.eval()设置到测试模式,否则在trainning模式下,就算是不去更新该模型的参数,其BN都会改变的,这个将会导致和预期不同的结果。

    Update 2020/3/17:
    评论区的Oshrin朋友提出问题

    作者您好,写的很好,但是是否存在问题。即使将track_running_stats设置为False,如果momentum不为None的话,还是会用滑动平均来计算running_mean和running_var的,而非是仅仅使用本batch的数据情况。而且关于冻结bn层,有一些更好的方法。

    这里的momentum的作用,按照文档,这个参数是在对统计参数进行更新过程中,进行指数平滑使用的,比如统计参数的更新策略将会变成:

    其中的更新后的统计参数,是根据当前观察xt和历史观察xˆ进行加权平均得到的(差分的加权平均相当于历史序列的指数平滑),默认的momentum=0.1。然而跟踪历史信息并且更新的这个行为是基于track_running_statstrue并且training=true的情况同时成立的时候,才会进行的,当在track_running_stats=true, training=false时(在默认的model.eval()情况下,即是之前谈到的四种组合的第三个,既满足这种情况),将不涉及到统计参数的指数滑动更新了。[12,13]

    这里引用一个不错的BN层冻结的例子,如:[14] 

    import torch
    import torch.nn as nn
    from torch.nn import init
    from torchvision import models
    from torch.autograd import Variable
    from apex.fp16_utils import *
    
    def fix_bn(m):
        classname = m.__class__.__name__
        if classname.find('BatchNorm') != -1:
            m.eval()
    
    model = models.resnet50(pretrained=True)
    model.cuda()
    model = network(model)
    model.train()
    model.apply(fix_bn) # fix batchnorm
    input = Variable(torch.FloatTensor(8, 3, 224, 224).cuda())
    output = model(input)
    output_mean = torch.mean(output)
    output_mean.backward()

    总结来说,在某些情况下,即便整体的模型处于model.train()的状态,但是某些BN层也可能需要按照需求设置为model_bn.eval()的状态。

    Update 2020.6.19:
    评论区有个同学问了一个问题:

    K.G.lee:想问博主,为什么模型测试时的参数为trainning=False, track_running_stats=True啊??测试不是用训练时的滑动平均值吗?为什么track_running_stats=True呢?为啥要跟踪当前batch??

    我感觉这个问题问得挺好的,我们需要去翻下源码[15],我们发现我们所有的BatchNorm层都有个共同的父类_BatchNorm,我们最需要关注的是return F.batch_norm()这一段,我们发现,其对training的判断逻辑是

    training=self.training or not self.track_running_stats
    那么,其实其在eval阶段,这里的track_running_stats并不能设置为False,原因很简单,这样会使得上面谈到的training=True,导致最终的期望程序错误。至于设置了track_running_stats=True是不是会导致在eval阶段跟踪测试集的batch的统计参数呢?我觉得是不会的,我们追踪会发现[16],整个流程的最后一步其实是调用了torch.batch_norm(),其是调用C++的底层函数,其参数列表可和track_running_stats一点关系都没有,只是由training控制,因此当training=False时,其不会跟踪统计参数的,只是会调用训练集训练得到的统计参数。(当然,时间有限,我也没有继续追到C++层次去看源码了)。
    class _BatchNorm(_NormBase):
    
        def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
                     track_running_stats=True):
            super(_BatchNorm, self).__init__(
                num_features, eps, momentum, affine, track_running_stats)
    
        def forward(self, input):
            self._check_input_dim(input)
    
            # exponential_average_factor is set to self.momentum
            # (when it is available) only so that it gets updated
            # in ONNX graph when this node is exported to ONNX.
            if self.momentum is None:
                exponential_average_factor = 0.0
            else:
                exponential_average_factor = self.momentum
    
            if self.training and self.track_running_stats:
                # TODO: if statement only here to tell the jit to skip emitting this when it is None
                if self.num_batches_tracked is not None:
                    self.num_batches_tracked = self.num_batches_tracked + 1
                    if self.momentum is None:  # use cumulative moving average
                        exponential_average_factor = 1.0 / float(self.num_batches_tracked)
                    else:  # use exponential moving average
                        exponential_average_factor = self.momentum
    
            return F.batch_norm(
                input, self.running_mean, self.running_var, self.weight, self.bias,
                self.training or not self.track_running_stats,
                exponential_average_factor, self.eps)
    def batch_norm(input, running_mean, running_var, weight=None, bias=None,
                   training=False, momentum=0.1, eps=1e-5):
        # type: (Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], bool, float, float) -> Tensor  # noqa
        r"""Applies Batch Normalization for each channel across a batch of data.
    
        See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`,
        :class:`~torch.nn.BatchNorm3d` for details.
        """
        if not torch.jit.is_scripting():
            if type(input) is not Tensor and has_torch_function((input,)):
                return handle_torch_function(
                    batch_norm, (input,), input, running_mean, running_var, weight=weight,
                    bias=bias, training=training, momentum=momentum, eps=eps)
        if training:
            _verify_batch_size(input.size())
    
        return torch.batch_norm(
            input, weight, bias, running_mean, running_var,
            training, momentum, eps, torch.backends.cudnn.enabled
        )

    Reference

    [1]. 用pytorch踩过的坑
    [2]. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// International Conference on International Conference on Machine Learning. JMLR.org, 2015:448-456.
    [3]. <深度学习优化策略-1>Batch Normalization(BN)
    [4]. 详解深度学习中的Normalization,BN/LN/WN
    [5]. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py#L23-L24
    [6]. https://discuss.pytorch.org/t/what-is-the-running-mean-of-batchnorm-if-gradients-are-accumulated/18870
    [7]. BatchNorm2d增加的参数track_running_stats如何理解?
    [8]. Why track_running_stats is not set to False during eval
    [9]. How to train with frozen BatchNorm?
    [10]. Proper way of fixing batchnorm layers during training
    [11]. 大白话《Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift》
    [12]. https://discuss.pytorch.org/t/what-does-model-eval-do-for-batchnorm-layer/7146/2
    [13]. https://zhuanlan.zhihu.com/p/65439075
    [14]. https://github.com/NVIDIA/apex/issues/122
    [15]. https://pytorch.org/docs/stable/_modules/torch/nn/modules/batchnorm.html#BatchNorm2d
    [16]. https://pytorch.org/docs/stable/_modules/torch/nn/functional.html#batch_norm

     
     
     
  • 相关阅读:
    我的世界-大堆网易账号免费送!!
    P1016 旅行家的预算
    P1015 回文数
    P1014 Cantor表
    P1013 进制位
    谷歌浏览器插件分享-tampermonkey油猴
    C++逐字输出函数
    P1012 拼数
    Windows下Nginx的启动、停止等命令
    遇到REMOTE HOST IDENTIFICATION HAS CHANGED怎么办?
  • 原文地址:https://www.cnblogs.com/jins-note/p/13440772.html
Copyright © 2020-2023  润新知