Description
已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0
Input
Output
第一行输出方程在[1,m]内的整数解的个数。
Sample Input
2
-3
1
Sample Output
1
2
HINT
对于100%的数据,0<n≤100,|ai|≤1010000,an≠0,m≤1000000。
题解:
到现在还是不怎么清楚正解到底是什么,大多数人应该都是选择了取模吧。但是这个明显是一种很不稳定的做法,很难保证复杂度和正确性两者兼得,也许事后可以AC,但是考试的时候谁能有足够的信心保证自己写对了呢?
因为a数组的值极其之大,而m相对来说要小得多,所以可以考虑把结果取模,其实就像之前提到的字符串Hash一样,这是无法保证完美的正确性的,但是出现冲突的概率也是极小。这取决于你所取的模及其大小。
也许最开始可以想到的就是取一个9位数的大模,这样是可以得70分的,也是相对稳妥的一种方法,时间复杂度为O(m * len),len表示a[i]的位数。如何减小复杂度?通过平时数学知识的了解,我们知道,设当前所取的模为MOD,若x = i时满足条件,则x + MOD必定也是满足的,所以我们可以把复杂度降到O(MOD + m)。
这又有一个问题了,之前所取的模比len还要大一些的,那就不得不缩小MOD了。但是如果MOD过小的话,正确性更加无法保证。如同字符串Hash一样,我们也可以选择取多个模,当且仅当在所有模数情况下满足,这个数才满足。然而由于数不能过大,要找到真正合适的又能够不超时的(这里不说官方数据,官方数据比较水,但是BZOJ上的数据到现在我还是过不了),很难。
所以在知道正解之前,我觉得这就是一道RP题啊。
代码(官方数据100分,BZOJ超时,Hash值来自hzwer)
---------------------------------------------------------------------------------------------------
#include <cstdio>
#include <cstring>
#define MAXN 105
#define MAXM 1000005
#ifdef WIN32
#define LLD "%I64d"
#else
#define LLD "%lld"
#endif
typedef long long ll;
const ll pri[5] = {11261, 19997, 22877, 21893, 14843};
ll max(ll a, ll b) { return a > b ? a : b; }
ll min(ll a, ll b) { return a < b ? a : b; }
ll n, m, a[5][MAXN], f[5][MAXM], l, ans[MAXM], x, tot;
char ch[MAXM];
ll calc(ll o, ll k)
{
ll x = 1, res = 0;
for (ll i = 0; i <= n; i++) (x *= o) %= pri[k], (res = x * a[k][i]) %= pri[k];
return res == 0;
}
int main()
{
freopen("3751.in", "r", stdin);
freopen("3751.out", "w", stdout);
scanf(LLD LLD, &n, &m);
for (ll i = 0; i <= n; i++)
{
scanf("%s", ch), l = strlen(ch), x = ch[0] == '-';
for (ll k = 0; k <= 4; k++)
for (ll j = x ? 1 : 0; j <= l - 1; j++)
(a[k][i] = (a[k][i] * 10) + ch[j] - '0') %= pri[k];
if (x) for (ll k = 0; k <= 4; k++) a[k][i] = pri[k] - a[k][i];
}
for (ll k = 0; k <= 4; k++)
for (ll i = 0; i < pri[k]; i++) f[k][i] = calc(i, k);
for (int i = 1; i <= m; i++)
{
int get = 1;
for (int k = 0; k <= 4; k++) if (!f[k][i % pri[k]]) { get = 0; break; }
if (get) ans[++tot] = i;
}
printf(LLD "
", tot);
for (int i = 1; i <= tot; i++) printf(LLD "
", ans[i]);
return 0;
}
---------------------------------------------------------------------------------------------------