• 【转载】用OCTAVE实现一元线性回归的梯度下降算法


    原文地址:http://www.cnblogs.com/KID-XiaoYuan/p/7247481.html

    STEP1 PLOTTING THE DATA

    在处理数据之前,我们通常要了解数据,对于这次的数据集合,我们可以通过离散的点来描绘它,在一个2D的平面里把它画出来。

     ex1data1.txt

    我们把ex1data1中的内容读取到X变量和y变量中,用m表示数据长度。

    1
    2
    3
    4
    data = load('ex1data1.txt');
    X = data(:,1);
    y = data(:,2);
    m = length(y);

    接下来通过图像描绘出来。

    1
    2
    3
    plot(x,y,'rx','MakerSize',10);
    ylabel('Profit in $10,000s');
    xlabel('Population of City in 10,000s');

      现在我们得到图像如图所示,就是原始的数据的直观表示。

    STEP2 GRADIENT DESCENT

    现在,我们通过梯度下降法对参数θ进行线性回归。

    依照我们之前所得出步骤方法

    迭代更新

    计算θ值函数:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
     
    % Initialize some useful values
    m = length(y); % number of training examples
     
    % You need to return the following variables correctly
    J = 0;
     
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    J = sum((X * theta - y).^2) / (2*m);     % X(79,2)  theta(2,1)
     
     
     
     
     
    % =========================================================================
     
    end

      接下来是梯度下降函数

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
    %   taking num_iters gradient steps with learning rate alpha
     
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    theta_s=theta;
     
    for iter = 1:num_iters
     
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta.
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        %
        theta(1) = theta(1) - alpha / m * sum(X * theta_s - y);      
        theta(2) = theta(2) - alpha / m * sum((X * theta_s - y) .* X(:,2));    
    % 必须同时更新theta(1)和theta(2),所以不能用X * theta,而要用theta_s存储上次结果。
        theta_s=theta;
         
     
        % ============================================================
     
        % Save the cost J in every iteration   
        J_history(iter) = computeCost(X, y, theta);
     
    end
    J_history
    end

    绘图函数:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    function plotData(x, y)
    %PLOTDATA Plots the data points x and y into a new figure
    % PLOTDATA(x,y) plots the data points and gives the figure axes labels of
    % population and profit.
     
    % ====================== YOUR CODE HERE ======================
    % Instructions: Plot the training data into a figure using the
    % "figure" and "plot" commands. Set the axes labels using
    % the "xlabel" and "ylabel" commands. Assume the
    % population and revenue data have been passed in
    % as the x and y arguments of this function.
    %
    % Hint: You can use the 'rx' option with plot to have the markers
    % appear as red crosses. Furthermore, you can make the
    % markers larger by using plot(..., 'rx', 'MarkerSize', 10);
     
    figure% open a new figure window
    plot(x, y, 'rx''MarkerSize', 10); % Plot the data
    ylabel('Profit in $10,000s'); % Set the y axis label
    xlabel('Population of City in 10,000s'); % Set the x axis label
     
      
     
      
     
    % ============================================================
     
    end

        根据以上函数,我们进行线性回归:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    <br>%% Machine Learning Online Class - Exercise 1: Linear Regression
     
    %  Instructions
    %  ------------
    %
    %  This file contains code that helps you get started on the
    %  linear exercise. You will need to complete the following functions
    %  in this exericse:
    %
    %     warmUpExercise.m
    %     plotData.m
    %     gradientDescent.m
    %     computeCost.m
    %     gradientDescentMulti.m
    %     computeCostMulti.m
    %     featureNormalize.m
    %     normalEqn.m
    %
    %  For this exercise, you will not need to change any code in this file,
    %  or any other files other than those mentioned above.
    %
    % x refers to the population size in 10,000s
    % y refers to the profit in $10,000s
    %
     
     
    %% ==================== Part 1: Basic Function ====================
    % Complete warmUpExercise.m
    fprintf('Running warmUpExercise ... ');
    fprintf('5x5 Identity Matrix: ');
    warmUpExercise()
     
    fprintf('Program paused. Press enter to continue. ');
    pause;
     
     
    %% ======================= Part 2: Plotting =======================
    fprintf('Plotting Data ... ')
    data = load('ex1data1.txt');
    X = data(:, 1); y = data(:, 2);
    m = length(y); % number of training examples
     
    % Plot Data
    % Note: You have to complete the code in plotData.m
    plotData(X, y);
     
    fprintf('Program paused. Press enter to continue. ');
    pause;
     
    %% =================== Part 3: Gradient descent ===================
    fprintf('Running Gradient Descent ... ')
     
    X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
    theta = zeros(2, 1); % initialize fitting parameters
     
    % Some gradient descent settings
    iterations = 1500;
    alpha = 0.01;
     
    % compute and display initial cost
    computeCost(X, y, theta)
     
    % run gradient descent
    theta = gradientDescent(X, y, theta, alpha, iterations);
     
    % print theta to screen
    fprintf('Theta found by gradient descent: ');
    fprintf('%f %f ', theta(1), theta(2));
     
    % Plot the linear fit
    hold on; % keep previous plot visible
    plot(X(:,2), X*theta, '-')
    legend('Training data''Linear regression')
    hold off % don't overlay any more plots on this figure
     
    % Predict values for population sizes of 35,000 and 70,000
    predict1 = [1, 3.5] *theta;
    fprintf('For population = 35,000, we predict a profit of %f ',...
        predict1*10000);
    predict2 = [1, 7] * theta;
    fprintf('For population = 70,000, we predict a profit of %f ',...
        predict2*10000);
     
    fprintf('Program paused. Press enter to continue. ');
    pause;
     
    %% ============= Part 4: Visualizing J(theta_0, theta_1) =============
    fprintf('Visualizing J(theta_0, theta_1) ... ')
     
    % Grid over which we will calculate J
    theta0_vals = linspace(-10, 10, 100);
    theta1_vals = linspace(-1, 4, 100);
     
    % initialize J_vals to a matrix of 0's
    J_vals = zeros(length(theta0_vals), length(theta1_vals));
     
    % Fill out J_vals
    for i = 1:length(theta0_vals)
        for j = 1:length(theta1_vals)
          t = [theta0_vals(i); theta1_vals(j)];   
          J_vals(i,j) = computeCost(X, y, t);
        end
    end
     
     
    % Because of the way meshgrids work in the surf command, we need to
    % transpose J_vals before calling surf, or else the axes will be flipped
    J_vals = J_vals';
    % Surface plot
    figure;
    surf(theta0_vals, theta1_vals, J_vals)
    xlabel(' heta_0'); ylabel(' heta_1');
     
    % Contour plot
    figure;
    % Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
    contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
    xlabel(' heta_0'); ylabel(' heta_1');
    hold on;
    plot(theta(1), theta(2), 'rx''MarkerSize', 10, 'LineWidth', 2);

      

    如图所示,绘制出线性回归函数。

    这时所绘制2D等高线图梯度下降表面图:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    function [X_norm, mu, sigma] = featureNormalize(X)
    %FEATURENORMALIZE Normalizes the features in X
    %   FEATURENORMALIZE(X) returns a normalized version of X where
    %   the mean value of each feature is 0 and the standard deviation
    %   is 1. This is often a good preprocessing step to do when
    %   working with learning algorithms.
     
    % You need to set these values correctly
    X_norm = X;
    mu = zeros(1, size(X, 2));      % mean value 均值   size(X,2)  列数
    sigma = zeros(1, size(X, 2));   % standard deviation  标准差
     
    % ====================== YOUR CODE HERE ======================
    % Instructions: First, for each feature dimension, compute the mean
    %               of the feature and subtract it from the dataset,
    %               storing the mean value in mu. Next, compute the
    %               standard deviation of each feature and divide
    %               each feature by it's standard deviation, storing
    %               the standard deviation in sigma.
    %
    %               Note that X is a matrix where each column is a
    %               feature and each row is an example. You need
    %               to perform the normalization separately for
    %               each feature.
    %
    % Hint: You might find the 'mean' and 'std' functions useful.
    %      
      mu = mean(X);       %  mean value
      sigma = std(X);     %  standard deviation
      X_norm  = (X - repmat(mu,size(X,1),1)) ./  repmat(sigma,size(X,1),1);
      
     
     
     
     
     
     
     
    % ============================================================
     
    end
    function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENTMULTI Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
    %   taking num_iters gradient steps with learning rate alpha
     
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
     
    for iter = 1:num_iters
     
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta.
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCostMulti) and gradient here.
        %
        theta = theta - alpha / m * X' * (X * theta - y);
     
     
        % ============================================================
     
        % Save the cost J in every iteration   
        J_history(iter) = computeCostMulti(X, y, theta);
     
    end
     
    end
    function J = computeCostMulti(X, y, theta)
    %COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
    %   J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
     
    % Initialize some useful values
    m = length(y); % number of training examples
     
    % You need to return the following variables correctly
    J = 0;
     
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    J = sum((X * theta - y).^2) / (2*m);   
     
     
     
     
    % =========================================================================
     
    end
    function [theta] = normalEqn(X, y)
    %NORMALEQN Computes the closed-form solution to linear regression
    %   NORMALEQN(X,y) computes the closed-form solution to linear
    %   regression using the normal equations.
     
    theta = zeros(size(X, 2), 1);
     
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the code to compute the closed form solution
    %               to linear regression and put the result in theta.
    %
     
    % ---------------------- Sample Solution ----------------------
     
    theta = pinv( X' * X ) * X' * y;
     
     
    % -------------------------------------------------------------
     
     
    % ============================================================
     
    end
    %% Machine Learning Online Class
    %  Exercise 1: Linear regression with multiple variables
    %
    %  Instructions
    %  ------------
    %
    %  This file contains code that helps you get started on the
    %  linear regression exercise.
    %
    %  You will need to complete the following functions in this
    %  exericse:
    %
    %     warmUpExercise.m
    %     plotData.m
    %     gradientDescent.m
    %     computeCost.m
    %     gradientDescentMulti.m
    %     computeCostMulti.m
    %     featureNormalize.m
    %     normalEqn.m
    %
    %  For this part of the exercise, you will need to change some
    %  parts of the code below for various experiments (e.g., changing
    %  learning rates).
    %
     
    %% Initialization
     
    %% ================ Part 1: Feature Normalization ================
     
    %% Clear and Close Figures
    clear close allclc
     
    fprintf('Loading data ... ');
     
    %% Load Data
    data = load('ex1data2.txt');
    X = data(:, 1:2);
    y = data(:, 3);
    m = length(y);
     
    % Print out some data points
    fprintf('First 10 examples from the dataset: ');
    fprintf(' x = [%.0f %.0f], y = %.0f ', [X(1:10,:) y(1:10,:)]');
     
    fprintf('Program paused. Press enter to continue. ');
    pause;
     
    % Scale features and set them to zero mean
    fprintf('Normalizing Features ... ');
     
    [X mu sigma] = featureNormalize(X);      % 均值0,标准差1
     
    % Add intercept term to X
    X = [ones(m, 1) X];
     
     
    %% ================ Part 2: Gradient Descent ================
     
    % ====================== YOUR CODE HERE ======================
    % Instructions: We have provided you with the following starter
    %               code that runs gradient descent with a particular
    %               learning rate (alpha).
    %
    %               Your task is to first make sure that your functions -
    %               computeCost and gradientDescent already work with
    %               this starter code and support multiple variables.
    %
    %               After that, try running gradient descent with
    %               different values of alpha and see which one gives
    %               you the best result.
    %
    %               Finally, you should complete the code at the end
    %               to predict the price of a 1650 sq-ft, 3 br house.
    %
    % Hint: By using the 'hold on' command, you can plot multiple
    %       graphs on the same figure.
    %
    % Hint: At prediction, make sure you do the same feature normalization.
    %
     
    fprintf('Running gradient descent ... ');
     
    % Choose some alpha value
    alpha = 0.01;
    num_iters = 8500;
     
    % Init Theta and Run Gradient Descent
    theta = zeros(3, 1);
    [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters);
     
    % Plot the convergence graph
    figure;
    plot(1:numel(J_history), J_history, '-b''LineWidth', 2);
    xlabel('Number of iterations');
    ylabel('Cost J');
     
    % Display gradient descent's result
    fprintf('Theta computed from gradient descent: ');
    fprintf(' %f ', theta);
    fprintf(' ');
     
    % Estimate the price of a 1650 sq-ft, 3 br house
    % ====================== YOUR CODE HERE ======================
    % Recall that the first column of X is all-ones. Thus, it does
    % not need to be normalized.
    price = [1 (([1650 3]-mu) ./ sigma)] * theta ;
    % ============================================================
     
    fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
             '(using gradient descent): $%f '], price);
     
    fprintf('Program paused. Press enter to continue. ');
    pause;
     
    %% ================ Part 3: Normal Equations ================
     
    fprintf('Solving with normal equations... ');
     
    % ====================== YOUR CODE HERE ======================
    % Instructions: The following code computes the closed form
    %               solution for linear regression using the normal
    %               equations. You should complete the code in
    %               normalEqn.m
    %
    %               After doing so, you should complete this code
    %               to predict the price of a 1650 sq-ft, 3 br house.
    %
     
    %% Load Data
    data = csvread('ex1data2.txt');
    X = data(:, 1:2);
    y = data(:, 3);
    m = length(y);
     
    % Add intercept term to X
    X = [ones(m, 1) X];
     
    % Calculate the parameters from the normal equation
    theta = normalEqn(X, y);
     
    % Display normal equation's result
    fprintf('Theta computed from the normal equations: ');
    fprintf(' %f ', theta);
    fprintf(' ');
     
     
    % Estimate the price of a 1650 sq-ft, 3 br house
    % ====================== YOUR CODE HERE ======================
    price = [1 1650 3] * theta ;
     
     
    % ============================================================
     
    fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ...
             '(using normal equations): $%f '], price);

      处理前:

    处理后:

     回归过程如图所示:

    至此,我们通过梯度下降法解决了此问题,我们还可以通过之前所说的数学方法来解决,但是对于数据太大的情况(通常大于10000),我们就会通过梯度下降法来解决了

      根据以上函数,我们进行线性回归:

  • 相关阅读:
    bzoj3105: [cqoi2013]新Nim游戏
    bzoj2142: 礼物
    bzoj3295: [Cqoi2011]动态逆序对
    THUWC2018酱油记
    hdu5306 Gorgeous Sequence
    高斯消元入门
    bzoj3667: RabinMiller算法
    关于wordpress忘记密码 找回密码的方式
    数据库事务四个特性
    mysql的账户失效,之前的密码无法登录
  • 原文地址:https://www.cnblogs.com/jincwfly/p/8284765.html
Copyright © 2020-2023  润新知