• IoU与非极大值抑制(NMS)的理解与实现


    1. IoU(区域交并比)

    计算IoU的公式如下图,可以看到IoU是一个比值,即交并比。

    在分子中,我们计算预测框和ground-truth之间的重叠区域;

    分母是并集区域,或者更简单地说,是预测框和ground-truth所包含的总区域。

    重叠区域和并集区域的比值,就是IoU。

     

    1.1 为什么使用IoU来评估目标检测器

    与分类任务不同,我们预测的bounding box的坐标需要去匹配ground-truth的坐标,而坐标完全匹配基本是不现实的。因此,我们需要定义一个评估指标,奖励那些与ground-truth匹配较好(重叠较大)的预测框。

    1.2 IoU的python实现

     1  def bb_intersection_over_union(boxA, boxB):
     2    # determine the (x, y)-coordinates of the intersection rectangle
     3    # 画个图会很明显,x左、y上取大的,x右、y下取小的,刚好对应交集
     4    xA = max(boxA[0], boxB[0])
     5    yA = max(boxA[1], boxB[1])
     6    xB = min(boxA[2], boxB[2])
     7    yB = min(boxA[3], boxB[3])
     8  9    # compute the area of intersection rectangle
    10    # 计算交集部分面积
    11    interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
    12 13    # compute the area of both the prediction and ground-truth rectangles
    14    # 计算预测值和真实值的面积
    15    boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
    16    boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
    17 18    # compute the intersection over union by taking the intersection
    19    # area and dividing it by the sum of prediction + ground-truth
    20    # areas - the interesection area
    21    # 计算IoU,即 交/(A+B-交)
    22    iou = interArea / float(boxAArea + boxBArea - interArea)
    23 24    # return the intersection over union value
    25    return iou

    2. 非极大化抑制(NMS)

    2.1 算法思想

    所谓非极大值抑制:先假设有6个输出的矩形框(即proposal_clip_box),根据分类器类别分类概率做排序,从小到大分别属于车辆的概率(scores)分别为A、B、C、D、E、F。

    (1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;

    (2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。

    (3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框。 就这样一直重复,找到所有被保留下来的矩形框。

     如上图F与BD重合度较大,可以去除BD。AE重合度较大,我们删除A,保留scores较大的E。C和其他重叠都小保留C。最终留下了C、E、F三个。

    2.2 python实现

    1.无条件保留置信度最高的框;

    2.删除与保留框IOU大于阈值的候选框;

     1 # --------------------------------------------------------
     2 # Fast R-CNN
     3 # Copyright (c) 2015 Microsoft
     4 # Licensed under The MIT License [see LICENSE for details]
     5 # Written by Ross Girshick
     6 # --------------------------------------------------------
     7 
     8 import numpy as np
     9 
    10 def py_cpu_nms(dets, thresh):
    11     """Pure Python NMS baseline."""
    12     x1 = dets[:, 0]
    13     y1 = dets[:, 1]
    14     x2 = dets[:, 2]
    15     y2 = dets[:, 3]
    16     scores = dets[:, 4]
    17 
    18     areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    19     order = scores.argsort()[::-1]
    20 
    21     keep = []
    22     while order.size > 0:
    23         i = order[0]
    24         keep.append(i)
    25         xx1 = np.maximum(x1[i], x1[order[1:]])
    26         yy1 = np.maximum(y1[i], y1[order[1:]])
    27         xx2 = np.minimum(x2[i], x2[order[1:]])
    28         yy2 = np.minimum(y2[i], y2[order[1:]])
    29 
    30         w = np.maximum(0.0, xx2 - xx1 + 1)
    31         h = np.maximum(0.0, yy2 - yy1 + 1)
    32         inter = w * h
    33         ovr = inter / (areas[i] + areas[order[1:]] - inter)
    34 
    35         inds = np.where(ovr <= thresh)[0]
    36         order = order[inds + 1]
    37 
    38     return keep

    3. soft-NMS

    soft NMS提出尤其对密集物体检测的检测效果有一定的提升作用

    绝大部分目标检测方法,最后都要用到 NMS-非极大值抑制进行后处理。 通常的做法是将检测框按得分排序,然后保留得分最高的框,同时删除与该框重叠面积大于一定比例的其它框。

    这种贪心式方法存在如下图所示的问题: 红色框和绿色框是当前的检测结果,二者的得分分别是0.95和0.80。如果按照传统的NMS进行处理,首先选中得分最高的红色框,然后绿色框就会因为与之重叠面积过大而被删掉。

    另一方面,NMS的阈值也不太容易确定,设小了会出现下图的情况(绿色框因为和红色框重叠面积较大而被删掉),设置过高又容易增大误检。

     soft NMS算法的大致思路为:M为当前得分最高框,bi 为待处理框,bi 和M的IOU越大,bi 的得分si 就下降的越厉害。

    算法结构如图所示:

    NMS中:

    soft NMS中:

    (1)线性加权:

    (2)高斯加权:

    soft NMS仍然有问题:其阈值仍然需要手工设定

    soft nms 代码实现:

    # coding:utf-8
    import numpy as np
    def soft_nms(boxes, sigma=0.5, Nt=0.1, threshold=0.001, method=1):
        N = boxes.shape[0]
        pos = 0
        maxscore = 0
        maxpos = 0
    
        for i in range(N):
            maxscore = boxes[i, 4]
            maxpos = i
    
            tx1 = boxes[i,0]
            ty1 = boxes[i,1]
            tx2 = boxes[i,2]
            ty2 = boxes[i,3]
            ts = boxes[i,4]
    
            pos = i + 1
        # get max box
            while pos < N:
                if maxscore < boxes[pos, 4]:
                    maxscore = boxes[pos, 4]
                    maxpos = pos
                pos = pos + 1
    
        # add max box as a detection
            boxes[i,0] = boxes[maxpos,0]
            boxes[i,1] = boxes[maxpos,1]
            boxes[i,2] = boxes[maxpos,2]
            boxes[i,3] = boxes[maxpos,3]
            boxes[i,4] = boxes[maxpos,4]
    
        # swap ith box with position of max box
            boxes[maxpos,0] = tx1
            boxes[maxpos,1] = ty1
            boxes[maxpos,2] = tx2
            boxes[maxpos,3] = ty2
            boxes[maxpos,4] = ts
    
            tx1 = boxes[i,0]
            ty1 = boxes[i,1]
            tx2 = boxes[i,2]
            ty2 = boxes[i,3]
            ts = boxes[i,4]
    
            pos = i + 1
        # NMS iterations, note that N changes if detection boxes fall below threshold
            while pos < N:
                x1 = boxes[pos, 0]
                y1 = boxes[pos, 1]
                x2 = boxes[pos, 2]
                y2 = boxes[pos, 3]
                s = boxes[pos, 4]
    
                area = (x2 - x1 + 1) * (y2 - y1 + 1)
                iw = (min(tx2, x2) - max(tx1, x1) + 1)
                if iw > 0:
                    ih = (min(ty2, y2) - max(ty1, y1) + 1)
                    if ih > 0:
                        ua = float((tx2 - tx1 + 1) * (ty2 - ty1 + 1) + area - iw * ih)
                        ov = iw * ih / ua #iou between max box and detection box
    
                        if method == 1: # linear
                            if ov > Nt:
                                weight = 1 - ov
                            else:
                                weight = 1
                        elif method == 2: # gaussian
                            weight = np.exp(-(ov * ov)/sigma)
                        else: # original NMS
                            if ov > Nt:
                                weight = 0
                            else:
                                weight = 1
    
                        boxes[pos, 4] = weight*boxes[pos, 4]
                        print(boxes[:, 4])
    
                # if box score falls below threshold, discard the box by swapping with last box
                # update N
                        if boxes[pos, 4] < threshold:
                            boxes[pos,0] = boxes[N-1, 0]
                            boxes[pos,1] = boxes[N-1, 1]
                            boxes[pos,2] = boxes[N-1, 2]
                            boxes[pos,3] = boxes[N-1, 3]
                            boxes[pos,4] = boxes[N-1, 4]
                            N = N - 1
                            pos = pos - 1
    
                pos = pos + 1
        keep = [i for i in range(N)]
        return keep
    boxes = np.array([[100, 100, 150, 168, 0.63],[166, 70, 312, 190, 0.55],[221, 250, 389, 500, 0.79],[12, 190, 300, 399, 0.9],[28, 130, 134, 302, 0.3]])
    keep = soft_nms(boxes)
    print(keep)

    参考链接:

    https://zhuanlan.zhihu.com/p/47189358

    https://zhuanlan.zhihu.com/p/70768666

    https://blog.csdn.net/leviopku/article/details/80886386

  • 相关阅读:
    团体程序设计天梯赛-练习集L1-002. 打印沙漏
    团体程序设计天梯赛-练习集L1-001. Hello World
    腾讯的一笔画游戏
    Educational Codeforces Round 11
    POJ 1149 PIGS
    POJ 3422 Kaka's Matrix Travels
    POJ 2914 Minimum Cut
    POJ 1815 Friendship
    POJ 1966 Cable TV Network
    BZOJ 1797: [Ahoi2009]Mincut 最小割
  • 原文地址:https://www.cnblogs.com/jiashun/p/nms.html
Copyright © 2020-2023  润新知