• machine learning学习笔记


    看到Max Welling教授主页上有不少学习notes,收藏一下吧,其最近出版了一本书呢还,还没看过。

    http://www.ics.uci.edu/~welling/classnotes/classnotes.html

    Statistical Estimation [ps]
    - bayesian estimation
    - maximum a posteriori (MAP) estimation
    - maximum likelihood (ML) estimation
    - Bias/Variance tradeoff & minimum description length (MDL)

    Expectation Maximization (EM) Algorithm [ps]
    -
     detailed derivation plus some examples

    Supervised Learning (Function Approximation) [ps]
    - mixture of experts (MoE)
    - cluster weighted modeling (CWM)

    Clustering [ps]
    - mixture of gaussians (MoG)
    - vector quantization (VQ) with k-means.

    Linear Models [ps]
    - factor analysis (FA)
    - probabilistic principal component analysis (PPCA)
    - principal component analysis (PCA)

    Independent Component Analysis (ICA) [ps]
    - noiseless ICA
    - noisy ICA
    - variational ICA

    Mixture of Factor Analysers (MoFA) [ps]
    - derivation of learning algorithm

    Hidden Markov Models (HMM) [ps]
    - viterbi decoding algorithm
    - Baum-Welch learning algorithm

    Kalman Filters (KF) [ps]
    - kalman filter algorithm (very detailed derivation)
    - kalman smoother algorithm (very detailed derivation)

    Approximate Inference Algorithms [ps]
    - variational EM
    - laplace approximation
    - importance sampling
    - rejection sampling
    - markov chain monte carlo (MCMC) sampling
    - gibbs sampling
    - hybrid monte carlo sampling (HMC)

    Belief Propagation (BP) [ps]
    - Introduction to BP and GBP: powerpoint presentation [ppt]
    - converting directed acyclic graphical models (DAG) into junction trees (JT)
    - Shafer-Shenoy belief propagation on junction trees
    - some examples

    Boltzmann Machine (BM) [ps]
    - derivation of learning algorithm

    Generative Topographic Mapping (GTM) [ps]
    - derivation of learning algorithm

    Introduction to Kernel Methods: powerpoint presentation [ppt]

    Kernel Principal Components Analysis [pdf]

    Kernel Canonical Correlation Analysis [pdf]

    Kernel Support Vector Machines [pdf]

    Kernel Ridge-Regression [pdf]

    Kernel Support Vector Regression [pdf]

    Convex Optimization [pdf]
    A brief introduction based on Stephan Boyd’s book, chapter 5.

    Fisher Linear Discriminant Analysis [pdf]

    转载请注明出处,谢谢。
  • 相关阅读:
    eclipse配置
    TableViewComponent v2
    4500装机指南
    【翻译】Ext JS 4——Ajax和Rest代理处理服务器端一场和消息的方法
    【翻译】Ext JS——高效的编码风格指南
    JDK8帮助文档生成-笔记
    【翻译】在Ext JS 5种使用ViewControllers
    【翻译】Ext JS最新技巧——2014-5-12
    PS图像特效算法——百叶窗
    人脸表情识别常用的几个数据库
  • 原文地址:https://www.cnblogs.com/jianyingzhou/p/4217683.html
Copyright © 2020-2023  润新知