• 文本分类实战(五)—— Bi-LSTM + Attention模型


    1 大纲概述

      文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:

      word2vec预训练词向量

      textCNN 模型

      charCNN 模型

      Bi-LSTM 模型

      Bi-LSTM + Attention 模型

      RCNN 模型

      Adversarial LSTM 模型

      Transformer 模型

      ELMo 预训练模型

      BERT 预训练模型

      jupyter notebook代码均在textClassifier仓库中,python代码在NLP-Project中的text_classfier中。

    2 数据集

      数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),数据预处理如文本分类实战(一)—— word2vec预训练词向量中一样,预处理后的文件为/data/preprocess/labeledTrain.csv。

    3 Bi-LSTM + Attention 模型

      Bi-LSTM + Attention模型来源于论文Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification。关于Attention的介绍见这篇

      Bi-LSTM + Attention 就是在Bi-LSTM的模型上加入Attention层,在Bi-LSTM中我们会用最后一个时序的输出向量 作为特征向量,然后进行softmax分类。Attention是先计算每个时序的权重,然后将所有时序 的向量进行加权和作为特征向量,然后进行softmax分类。在实验中,加上Attention确实对结果有所提升。其模型结构如下图:

      

    4 参数配置

    import os
    import csv
    import time
    import datetime
    import random
    import json
    
    import warnings
    from collections import Counter
    from math import sqrt
    
    import gensim
    import pandas as pd
    import numpy as np
    import tensorflow as tf
    from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
    warnings.filterwarnings("ignore")
    # 配置参数
    
    class TrainingConfig(object):
        epoches = 4
        evaluateEvery = 100
        checkpointEvery = 100
        learningRate = 0.001
        
    class ModelConfig(object):
        embeddingSize = 200
        
        hiddenSizes = [256, 128]  # LSTM结构的神经元个数
        
        dropoutKeepProb = 0.5
        l2RegLambda = 0.0
        
    class Config(object):
        sequenceLength = 200  # 取了所有序列长度的均值
        batchSize = 128
        
        dataSource = "../data/preProcess/labeledTrain.csv"
        
        stopWordSource = "../data/english"
        
        numClasses = 1  # 二分类设置为1,多分类设置为类别的数目
        
        rate = 0.8  # 训练集的比例
        
        training = TrainingConfig()
        
        model = ModelConfig()
    
        
    # 实例化配置参数对象
    config = Config()

    5 生成训练数据

      1)将数据加载进来,将句子分割成词表示,并去除低频词和停用词。

      2)将词映射成索引表示,构建词汇-索引映射表,并保存成json的数据格式,之后做inference时可以用到。(注意,有的词可能不在word2vec的预训练词向量中,这种词直接用UNK表示)

      3)从预训练的词向量模型中读取出词向量,作为初始化值输入到模型中。

      4)将数据集分割成训练集和测试集

    # 数据预处理的类,生成训练集和测试集
    
    class Dataset(object):
        def __init__(self, config):
            self.config = config
            self._dataSource = config.dataSource
            self._stopWordSource = config.stopWordSource  
            
            self._sequenceLength = config.sequenceLength  # 每条输入的序列处理为定长
            self._embeddingSize = config.model.embeddingSize
            self._batchSize = config.batchSize
            self._rate = config.rate
            
            self._stopWordDict = {}
            
            self.trainReviews = []
            self.trainLabels = []
            
            self.evalReviews = []
            self.evalLabels = []
            
            self.wordEmbedding =None
            
            self.labelList = []
            
        def _readData(self, filePath):
            """
            从csv文件中读取数据集
            """
            
            df = pd.read_csv(filePath)
            
            if self.config.numClasses == 1:
                labels = df["sentiment"].tolist()
            elif self.config.numClasses > 1:
                labels = df["rate"].tolist()
                
            review = df["review"].tolist()
            reviews = [line.strip().split() for line in review]
    
            return reviews, labels
        
        def _labelToIndex(self, labels, label2idx):
            """
            将标签转换成索引表示
            """
            labelIds = [label2idx[label] for label in labels]
            return labelIds
        
        def _wordToIndex(self, reviews, word2idx):
            """
            将词转换成索引
            """
            reviewIds = [[word2idx.get(item, word2idx["UNK"]) for item in review] for review in reviews]
            return reviewIds
            
        def _genTrainEvalData(self, x, y, word2idx, rate):
            """
            生成训练集和验证集
            """
            reviews = []
            for review in x:
                if len(review) >= self._sequenceLength:
                    reviews.append(review[:self._sequenceLength])
                else:
                    reviews.append(review + [word2idx["PAD"]] * (self._sequenceLength - len(review)))
                
            trainIndex = int(len(x) * rate)
            
            trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
            trainLabels = np.array(y[:trainIndex], dtype="float32")
            
            evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
            evalLabels = np.array(y[trainIndex:], dtype="float32")
    
            return trainReviews, trainLabels, evalReviews, evalLabels
            
        def _genVocabulary(self, reviews, labels):
            """
            生成词向量和词汇-索引映射字典,可以用全数据集
            """
            
            allWords = [word for review in reviews for word in review]
            
            # 去掉停用词
            subWords = [word for word in allWords if word not in self.stopWordDict]
            
            wordCount = Counter(subWords)  # 统计词频
            sortWordCount = sorted(wordCount.items(), key=lambda x: x[1], reverse=True)
            
            # 去除低频词
            words = [item[0] for item in sortWordCount if item[1] >= 5]
            
            vocab, wordEmbedding = self._getWordEmbedding(words)
            self.wordEmbedding = wordEmbedding
            
            word2idx = dict(zip(vocab, list(range(len(vocab)))))
            
            uniqueLabel = list(set(labels))
            label2idx = dict(zip(uniqueLabel, list(range(len(uniqueLabel)))))
            self.labelList = list(range(len(uniqueLabel)))
            
            # 将词汇-索引映射表保存为json数据,之后做inference时直接加载来处理数据
            with open("../data/wordJson/word2idx.json", "w", encoding="utf-8") as f:
                json.dump(word2idx, f)
            
            with open("../data/wordJson/label2idx.json", "w", encoding="utf-8") as f:
                json.dump(label2idx, f)
            
            return word2idx, label2idx
                
        def _getWordEmbedding(self, words):
            """
            按照我们的数据集中的单词取出预训练好的word2vec中的词向量
            """
            
            wordVec = gensim.models.KeyedVectors.load_word2vec_format("../word2vec/word2Vec.bin", binary=True)
            vocab = []
            wordEmbedding = []
            
            # 添加 "pad" 和 "UNK", 
            vocab.append("PAD")
            vocab.append("UNK")
            wordEmbedding.append(np.zeros(self._embeddingSize))
            wordEmbedding.append(np.random.randn(self._embeddingSize))
            
            for word in words:
                try:
                    vector = wordVec.wv[word]
                    vocab.append(word)
                    wordEmbedding.append(vector)
                except:
                    print(word + "不存在于词向量中")
                    
            return vocab, np.array(wordEmbedding)
        
        def _readStopWord(self, stopWordPath):
            """
            读取停用词
            """
            
            with open(stopWordPath, "r") as f:
                stopWords = f.read()
                stopWordList = stopWords.splitlines()
                # 将停用词用列表的形式生成,之后查找停用词时会比较快
                self.stopWordDict = dict(zip(stopWordList, list(range(len(stopWordList)))))
                
        def dataGen(self):
            """
            初始化训练集和验证集
            """
            
            # 初始化停用词
            self._readStopWord(self._stopWordSource)
            
            # 初始化数据集
            reviews, labels = self._readData(self._dataSource)
            
            # 初始化词汇-索引映射表和词向量矩阵
            word2idx, label2idx = self._genVocabulary(reviews, labels)
            
            # 将标签和句子数值化
            labelIds = self._labelToIndex(labels, label2idx)
            reviewIds = self._wordToIndex(reviews, word2idx)
            
            # 初始化训练集和测试集
            trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviewIds, labelIds, word2idx, self._rate)
            self.trainReviews = trainReviews
            self.trainLabels = trainLabels
            
            self.evalReviews = evalReviews
            self.evalLabels = evalLabels
            
            
    data = Dataset(config)
    data.dataGen()

    6 生成batch数据集

      采用生成器的形式向模型输入batch数据集,(生成器可以避免将所有的数据加入到内存中)

    # 输出batch数据集
    
    def nextBatch(x, y, batchSize):
            """
            生成batch数据集,用生成器的方式输出
            """
        
            perm = np.arange(len(x))
            np.random.shuffle(perm)
            x = x[perm]
            y = y[perm]
            
            numBatches = len(x) // batchSize
    
            for i in range(numBatches):
                start = i * batchSize
                end = start + batchSize
                batchX = np.array(x[start: end], dtype="int64")
                batchY = np.array(y[start: end], dtype="float32")
                
                yield batchX, batchY

    7 Bi-LSTM + Attention模型

    # 构建模型
    class BiLSTMAttention(object):
        """
        Text CNN 用于文本分类
        """
        def __init__(self, config, wordEmbedding):
    
            # 定义模型的输入
            self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
            self.inputY = tf.placeholder(tf.int32, [None], name="inputY")
            
            self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb")
            
            # 定义l2损失
            l2Loss = tf.constant(0.0)
            
            # 词嵌入层
            with tf.name_scope("embedding"):
    
                # 利用预训练的词向量初始化词嵌入矩阵
                self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec") ,name="W")
                # 利用词嵌入矩阵将输入的数据中的词转换成词向量,维度[batch_size, sequence_length, embedding_size]
                self.embeddedWords = tf.nn.embedding_lookup(self.W, self.inputX)
                
            # 定义两层双向LSTM的模型结构
            with tf.name_scope("Bi-LSTM"):
                for idx, hiddenSize in enumerate(config.model.hiddenSizes):
                    with tf.name_scope("Bi-LSTM" + str(idx)):
                        # 定义前向LSTM结构
                        lstmFwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
                                                                     output_keep_prob=self.dropoutKeepProb)
                        # 定义反向LSTM结构
                        lstmBwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
                                                                     output_keep_prob=self.dropoutKeepProb)
    
    
                        # 采用动态rnn,可以动态的输入序列的长度,若没有输入,则取序列的全长
                        # outputs是一个元祖(output_fw, output_bw),其中两个元素的维度都是[batch_size, max_time, hidden_size],fw和bw的hidden_size一样
                        # self.current_state 是最终的状态,二元组(state_fw, state_bw),state_fw=[batch_size, s],s是一个元祖(h, c)
                        outputs_, self.current_state = tf.nn.bidirectional_dynamic_rnn(lstmFwCell, lstmBwCell, 
                                                                                      self.embeddedWords, dtype=tf.float32,
                                                                                      scope="bi-lstm" + str(idx))
            
                        # 对outputs中的fw和bw的结果拼接 [batch_size, time_step, hidden_size * 2], 传入到下一层Bi-LSTM中
                        self.embeddedWords = tf.concat(outputs_, 2)
                    
            # 将最后一层Bi-LSTM输出的结果分割成前向和后向的输出
            outputs = tf.split(self.embeddedWords, 2, -1)
            
            # 在Bi-LSTM+Attention的论文中,将前向和后向的输出相加
            with tf.name_scope("Attention"):
                H = outputs[0] + outputs[1]
    
                # 得到Attention的输出
                output = self.attention(H)
                outputSize = config.model.hiddenSizes[-1]
            
            # 全连接层的输出
            with tf.name_scope("output"):
                outputW = tf.get_variable(
                    "outputW",
                    shape=[outputSize, config.numClasses],
                    initializer=tf.contrib.layers.xavier_initializer())
                
                outputB= tf.Variable(tf.constant(0.1, shape=[config.numClasses]), name="outputB")
                l2Loss += tf.nn.l2_loss(outputW)
                l2Loss += tf.nn.l2_loss(outputB)
                self.logits = tf.nn.xw_plus_b(output, outputW, outputB, name="logits")
                
                if config.numClasses == 1:
                    self.predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.float32, name="predictions")
                elif config.numClasses > 1:
                    self.predictions = tf.argmax(self.logits, axis=-1, name="predictions")
            
            # 计算二元交叉熵损失
            with tf.name_scope("loss"):
                
                if config.numClasses == 1:
                    losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.cast(tf.reshape(self.inputY, [-1, 1]), 
                                                                                                        dtype=tf.float32))
                elif config.numClasses > 1:
                    losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.inputY)
                    
                self.loss = tf.reduce_mean(losses) + config.model.l2RegLambda * l2Loss
        
        def attention(self, H):
            """
            利用Attention机制得到句子的向量表示
            """
            # 获得最后一层LSTM的神经元数量
            hiddenSize = config.model.hiddenSizes[-1]
            
            # 初始化一个权重向量,是可训练的参数
            W = tf.Variable(tf.random_normal([hiddenSize], stddev=0.1))
            
            # 对Bi-LSTM的输出用激活函数做非线性转换
            M = tf.tanh(H)
            
            # 对W和M做矩阵运算,W=[batch_size, time_step, hidden_size],计算前做维度转换成[batch_size * time_step, hidden_size]
            # newM = [batch_size, time_step, 1],每一个时间步的输出由向量转换成一个数字
            newM = tf.matmul(tf.reshape(M, [-1, hiddenSize]), tf.reshape(W, [-1, 1]))
            
            # 对newM做维度转换成[batch_size, time_step]
            restoreM = tf.reshape(newM, [-1, config.sequenceLength])
            
            # 用softmax做归一化处理[batch_size, time_step]
            self.alpha = tf.nn.softmax(restoreM)
            
            # 利用求得的alpha的值对H进行加权求和,用矩阵运算直接操作
            r = tf.matmul(tf.transpose(H, [0, 2, 1]), tf.reshape(self.alpha, [-1, config.sequenceLength, 1]))
            
            # 将三维压缩成二维sequeezeR=[batch_size, hidden_size]
            sequeezeR = tf.reshape(r, [-1, hiddenSize])
            
            sentenceRepren = tf.tanh(sequeezeR)
            
            # 对Attention的输出可以做dropout处理
            output = tf.nn.dropout(sentenceRepren, self.dropoutKeepProb)
            
            return output

    8 定义计算metrics的函数

    """
    定义各类性能指标
    """
    
    def mean(item: list) -> float:
        """
        计算列表中元素的平均值
        :param item: 列表对象
        :return:
        """
        res = sum(item) / len(item) if len(item) > 0 else 0
        return res
    
    
    def accuracy(pred_y, true_y):
        """
        计算二类和多类的准确率
        :param pred_y: 预测结果
        :param true_y: 真实结果
        :return:
        """
        if isinstance(pred_y[0], list):
            pred_y = [item[0] for item in pred_y]
        corr = 0
        for i in range(len(pred_y)):
            if pred_y[i] == true_y[i]:
                corr += 1
        acc = corr / len(pred_y) if len(pred_y) > 0 else 0
        return acc
    
    
    def binary_precision(pred_y, true_y, positive=1):
        """
        二类的精确率计算
        :param pred_y: 预测结果
        :param true_y: 真实结果
        :param positive: 正例的索引表示
        :return:
        """
        corr = 0
        pred_corr = 0
        for i in range(len(pred_y)):
            if pred_y[i] == positive:
                pred_corr += 1
                if pred_y[i] == true_y[i]:
                    corr += 1
    
        prec = corr / pred_corr if pred_corr > 0 else 0
        return prec
    
    
    def binary_recall(pred_y, true_y, positive=1):
        """
        二类的召回率
        :param pred_y: 预测结果
        :param true_y: 真实结果
        :param positive: 正例的索引表示
        :return:
        """
        corr = 0
        true_corr = 0
        for i in range(len(pred_y)):
            if true_y[i] == positive:
                true_corr += 1
                if pred_y[i] == true_y[i]:
                    corr += 1
    
        rec = corr / true_corr if true_corr > 0 else 0
        return rec
    
    
    def binary_f_beta(pred_y, true_y, beta=1.0, positive=1):
        """
        二类的f beta值
        :param pred_y: 预测结果
        :param true_y: 真实结果
        :param beta: beta值
        :param positive: 正例的索引表示
        :return:
        """
        precision = binary_precision(pred_y, true_y, positive)
        recall = binary_recall(pred_y, true_y, positive)
        try:
            f_b = (1 + beta * beta) * precision * recall / (beta * beta * precision + recall)
        except:
            f_b = 0
        return f_b
    
    
    def multi_precision(pred_y, true_y, labels):
        """
        多类的精确率
        :param pred_y: 预测结果
        :param true_y: 真实结果
        :param labels: 标签列表
        :return:
        """
        if isinstance(pred_y[0], list):
            pred_y = [item[0] for item in pred_y]
    
        precisions = [binary_precision(pred_y, true_y, label) for label in labels]
        prec = mean(precisions)
        return prec
    
    
    def multi_recall(pred_y, true_y, labels):
        """
        多类的召回率
        :param pred_y: 预测结果
        :param true_y: 真实结果
        :param labels: 标签列表
        :return:
        """
        if isinstance(pred_y[0], list):
            pred_y = [item[0] for item in pred_y]
    
        recalls = [binary_recall(pred_y, true_y, label) for label in labels]
        rec = mean(recalls)
        return rec
    
    
    def multi_f_beta(pred_y, true_y, labels, beta=1.0):
        """
        多类的f beta值
        :param pred_y: 预测结果
        :param true_y: 真实结果
        :param labels: 标签列表
        :param beta: beta值
        :return:
        """
        if isinstance(pred_y[0], list):
            pred_y = [item[0] for item in pred_y]
    
        f_betas = [binary_f_beta(pred_y, true_y, beta, label) for label in labels]
        f_beta = mean(f_betas)
        return f_beta
    
    
    def get_binary_metrics(pred_y, true_y, f_beta=1.0):
        """
        得到二分类的性能指标
        :param pred_y:
        :param true_y:
        :param f_beta:
        :return:
        """
        acc = accuracy(pred_y, true_y)
        recall = binary_recall(pred_y, true_y)
        precision = binary_precision(pred_y, true_y)
        f_beta = binary_f_beta(pred_y, true_y, f_beta)
        return acc, recall, precision, f_beta
    
    
    def get_multi_metrics(pred_y, true_y, labels, f_beta=1.0):
        """
        得到多分类的性能指标
        :param pred_y:
        :param true_y:
        :param labels:
        :param f_beta:
        :return:
        """
        acc = accuracy(pred_y, true_y)
        recall = multi_recall(pred_y, true_y, labels)
        precision = multi_precision(pred_y, true_y, labels)
        f_beta = multi_f_beta(pred_y, true_y, labels, f_beta)
        return acc, recall, precision, f_beta

    9 训练模型

      在训练时,我们定义了tensorBoard的输出,并定义了两种模型保存的方法。

    # 训练模型
    
    # 生成训练集和验证集
    trainReviews = data.trainReviews
    trainLabels = data.trainLabels
    evalReviews = data.evalReviews
    evalLabels = data.evalLabels
    
    wordEmbedding = data.wordEmbedding
    labelList = data.labelList
    
    # 定义计算图
    with tf.Graph().as_default():
    
        session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
        session_conf.gpu_options.allow_growth=True
        session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9  # 配置gpu占用率  
    
        sess = tf.Session(config=session_conf)
        
        # 定义会话
        with sess.as_default():
            lstm = BiLSTMAttention(config, wordEmbedding)
            
            globalStep = tf.Variable(0, name="globalStep", trainable=False)
            # 定义优化函数,传入学习速率参数
            optimizer = tf.train.AdamOptimizer(config.training.learningRate)
            # 计算梯度,得到梯度和变量
            gradsAndVars = optimizer.compute_gradients(lstm.loss)
            # 将梯度应用到变量下,生成训练器
            trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep)
            
            # 用summary绘制tensorBoard
            gradSummaries = []
            for g, v in gradsAndVars:
                if g is not None:
                    tf.summary.histogram("{}/grad/hist".format(v.name), g)
                    tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
            
            outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
            print("Writing to {}
    ".format(outDir))
            
            lossSummary = tf.summary.scalar("loss", lstm.loss)
            summaryOp = tf.summary.merge_all()
            
            trainSummaryDir = os.path.join(outDir, "train")
            trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph)
            
            evalSummaryDir = os.path.join(outDir, "eval")
            evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph)
            
            
            # 初始化所有变量
            saver = tf.train.Saver(tf.global_variables(), max_to_keep=5)
            
            # 保存模型的一种方式,保存为pb文件
            savedModelPath = "../model/bilstm-atten/savedModel"
            if os.path.exists(savedModelPath):
                os.rmdir(savedModelPath)
            builder = tf.saved_model.builder.SavedModelBuilder(savedModelPath)
                
            sess.run(tf.global_variables_initializer())
    
            def trainStep(batchX, batchY):
                """
                训练函数
                """   
                feed_dict = {
                  lstm.inputX: batchX,
                  lstm.inputY: batchY,
                  lstm.dropoutKeepProb: config.model.dropoutKeepProb
                }
                _, summary, step, loss, predictions = sess.run(
                    [trainOp, summaryOp, globalStep, lstm.loss, lstm.predictions],
                    feed_dict)
                timeStr = datetime.datetime.now().isoformat()
                
                if config.numClasses == 1:
                    acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
    
                    
                elif config.numClasses > 1:
                    acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
                                                                  labels=labelList)
                    
                trainSummaryWriter.add_summary(summary, step)
                
                return loss, acc, prec, recall, f_beta
    
            def devStep(batchX, batchY):
                """
                验证函数
                """
                feed_dict = {
                  lstm.inputX: batchX,
                  lstm.inputY: batchY,
                  lstm.dropoutKeepProb: 1.0
                }
                summary, step, loss, predictions = sess.run(
                    [summaryOp, globalStep, lstm.loss, lstm.predictions],
                    feed_dict)
                
                if config.numClasses == 1:
                
                    acc, precision, recall, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
                elif config.numClasses > 1:
                    acc, precision, recall, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY, labels=labelList)
                
                evalSummaryWriter.add_summary(summary, step)
                
                return loss, acc, precision, recall, f_beta
            
            for i in range(config.training.epoches):
                # 训练模型
                print("start training model")
                for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
                    loss, acc, prec, recall, f_beta = trainStep(batchTrain[0], batchTrain[1])
                    
                    currentStep = tf.train.global_step(sess, globalStep) 
                    print("train: step: {}, loss: {}, acc: {}, recall: {}, precision: {}, f_beta: {}".format(
                        currentStep, loss, acc, recall, prec, f_beta))
                    if currentStep % config.training.evaluateEvery == 0:
                        print("
    Evaluation:")
                        
                        losses = []
                        accs = []
                        f_betas = []
                        precisions = []
                        recalls = []
                        
                        for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
                            loss, acc, precision, recall, f_beta = devStep(batchEval[0], batchEval[1])
                            losses.append(loss)
                            accs.append(acc)
                            f_betas.append(f_beta)
                            precisions.append(precision)
                            recalls.append(recall)
                            
                        time_str = datetime.datetime.now().isoformat()
                        print("{}, step: {}, loss: {}, acc: {},precision: {}, recall: {}, f_beta: {}".format(time_str, currentStep, mean(losses), 
                                                                                                           mean(accs), mean(precisions),
                                                                                                           mean(recalls), mean(f_betas)))
                        
                    if currentStep % config.training.checkpointEvery == 0:
                        # 保存模型的另一种方法,保存checkpoint文件
                        path = saver.save(sess, "../model/Bi-LSTM-atten/model/my-model", global_step=currentStep)
                        print("Saved model checkpoint to {}
    ".format(path))
                        
            inputs = {"inputX": tf.saved_model.utils.build_tensor_info(lstm.inputX),
                      "keepProb": tf.saved_model.utils.build_tensor_info(lstm.dropoutKeepProb)}
    
            outputs = {"predictions": tf.saved_model.utils.build_tensor_info(lstm.binaryPreds)}
    
            prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
                                                                                          method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
            legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
            builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
                                                signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op)
    
            builder.save()

    10 预测代码

    x = "this movie is full of references like mad max ii the wild one and many others the ladybug´s face it´s a clear reference or tribute to peter lorre this movie is a masterpiece we´ll talk much more about in the future"
    
    # 注:下面两个词典要保证和当前加载的模型对应的词典是一致的
    with open("../data/wordJson/word2idx.json", "r", encoding="utf-8") as f:
        word2idx = json.load(f)
            
    with open("../data/wordJson/label2idx.json", "r", encoding="utf-8") as f:
        label2idx = json.load(f)
    idx2label = {value: key for key, value in label2idx.items()}
        
    xIds = [word2idx.get(item, word2idx["UNK"]) for item in x.split(" ")]
    if len(xIds) >= config.sequenceLength:
        xIds = xIds[:config.sequenceLength]
    else:
        xIds = xIds + [word2idx["PAD"]] * (config.sequenceLength - len(xIds))
    
    graph = tf.Graph()
    with graph.as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
        session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
        sess = tf.Session(config=session_conf)
    
        with sess.as_default():
            checkpoint_file = tf.train.latest_checkpoint("../model/Bi-LSTM-atten/model/")
            saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
            saver.restore(sess, checkpoint_file)
    
            # 获得需要喂给模型的参数,输出的结果依赖的输入值
            inputX = graph.get_operation_by_name("inputX").outputs[0]
            dropoutKeepProb = graph.get_operation_by_name("dropoutKeepProb").outputs[0]
    
            # 获得输出的结果
            predictions = graph.get_tensor_by_name("output/predictions:0")
    
            pred = sess.run(predictions, feed_dict={inputX: [xIds], dropoutKeepProb: 1.0})[0]
            
    pred = [idx2label[item] for item in pred]     
    print(pred)
  • 相关阅读:
    MapReduce-shuffle过程详解
    YARN中的失败分析
    HBase协处理器的使用(添加Solr二级索引)
    Flume具体应用(多案例)
    Flume架构及运行机制
    python Cmd实例之网络爬虫应用
    mongodb3 权限认证问题总结
    webpack配置
    apt软件包管理
    python笔记之编程风格大比拼
  • 原文地址:https://www.cnblogs.com/jiangxinyang/p/10208227.html
Copyright © 2020-2023  润新知